JRM Vol.24 No.1 pp. 254-260
doi: 10.20965/jrm.2012.p0254

Development Report:

Simulation Analysis of a Miniature Shutter Unit Using an Electromagnet for Digital Still Cameras and Video Cameras

Masayuki Sugasawa and Kohtaro Ohba

Department of Intelligent Interaction Technologies, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan

June 20, 2011
August 16, 2011
February 20, 2012
electromagnet, actuator, camera module, synthesis, simulation
Customers require that camera shutter and diaphragm size and power consumption are minimized but shutter speed maximized for the electromagnetic shutter units used in digital still-camera and video cameras. This paper describes the problems with past shutter and diaphragm units and proposes a new shutter unit based on simulation analysis. We compare the prototype model with simulated shutter speed data. Experimental results ascertain the effectiveness of this approach. Simulation results agreed quite well with experimental results.
Cite this article as:
M. Sugasawa and K. Ohba, “Simulation Analysis of a Miniature Shutter Unit Using an Electromagnet for Digital Still Cameras and Video Cameras,” J. Robot. Mechatron., Vol.24 No.1, pp. 254-260, 2012.
Data files:
  1. [1] T. Kobayashi, PENTAX Co., Ltd., “Curtain shutter device,” JP Pat., 2006-153988, 2006.
  2. [2] M. Ohno, Nihon Densan Copal Co., Ltd., “Diaphragm Device For Camera,” JP Pat. 2010-128357, 2010.
  3. [3] M. Sugasawa etc., SONY Co., Ltd., “Optical Device Actuator,” JP Pat. 2008-3129, 2008.
  4. [4] JMAG Product Catalog, JSOL Corporation.
  5. [5] Y. Kawase, T. Yamaguchi, K. Iwashita, T. Kobayashi, and K. Suzuki, “3-D Finite Element Analysis of Dynamic Characteristics of Electromagnet with Permanent Magnets,” IEEE Trans. on Magnetics, Vol.42, No.4, pp. 1339-1342, 2006.
  6. [6] Y. Kawase, “Recent Large Scale 3-D Finite Element Analysis and Applications,” The Magnetic Society of Japan, Vol.28, No.10, pp. 1017-1022, 2004.
  7. [7] K. Fujiwara, T. Nakata, and H. Ohashi, “Improvement of Convergence Characteristic of ICCG Method for A-ΦMethod Using Edge Element,” IEEE Trans. on Magnetics, Vol.32, No.3, pp. 804-807, 1996.
  8. [8] T. Nakata and N. Takahashi, “Numerical Analysis of Transient Magnetic Field in a Capacitor-Discharge Impulse Magnetizer,” IEEE Trans. on Magnetics, Vol.22, No.5, pp. 526-528, 1996.
  9. [9] K. J. Binns, M. A. Jabbar, and W. R. Barnard, “Computation of the Magnetic Field of Permanent Magnets in Iron Cores,” Proc. IEE, Vol.122, No.12, pp. 1377-1381, 1975.
  10. [10] T. Nakata, N. Takahashi, K. Fujiwara, T. Imaiand, and K. Muramatsu, “Comparison of Various Methods of Analysis and Finite Elements in 3-D Magnetic Field Analysis,” IEEE Trans. on Magnetics, Vol.27, No.5, pp. 4073-4076, 1991.
  11. [11] Y. Kawase, “3-D Finite Element Method Analysis of a Magnetic Field Taking Account of Armature Motion,” The Magnetic Society of Japan, Vol.23, No.8, pp. 1895-1900, 1999.
  12. [12] Magnet CM Series Catalog, TDK Corporation.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 19, 2024