Paper:
Self-Supervised Online Long-Range Road Estimation in Complicated Urban Environments
Yoji Kuroda, Masataka Suzuki, Teppei Saitoh,
and Eisuke Terada
Department of Mechanical Engineering, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- [1] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski, “Self-supervised monocular road detection in desert terrain,” Robotics: Science & Systems, 2006.
- [2] L. Jackel, E. Krotkov, M. Perschbacher, J. Pippine, and C. Sullivan, “The DARPA LAGR program: Goals, challenges, methodology, and Phase I results,” J. of Field Robotics, Vol.23, pp. 945-973, November/December 2006.
- [3] M. Yoichi, C. Alexander, E. Takeuchi, A. Aburadani, and T. Tsubouchi “Autonomous Robot Navigation in Outdoor Cluttered Pedestrian Walkways,” J. of Field Robotics, 2009.
- [4] S. Yuta, H. Hashimoto, and H. Tashiro, “Tsukuba Challenge – Real World Robot Challenge (RWRC): Toward actual autonomous robots in our daily life,” The 25th Annual Conf. of the Robotics Society of Japan, 3D19, 2007.
- [5] T. Saitoh and Y. Kuroda, “Self-Supervised Mapping for Road Shape Estimation Using Laser Remission in Urban Environments,” J. of Robotics and Mechatronics, Vol.22, No.6, pp. 726-736, Dec. 2010.
- [6] K. M. Wurm, R. Kümmerle, C. Stachniss, and W. Burgard, “Improving Robot Navigation in Structured Outdoor Environments by Identifying Vegetation from Laser Data,” In Proc. of the IEEE/RSJ Int. Conf. on IROS, 2009.
- [7] I. Ulrich and I. Nourbakhsh, “Appearance-Based Obstacle Detection with Monocular Color Vision,” AAAI Conf., pp. 866-871, 2000.
- [8] G. Bradski, A. Kaehler, and V. Pisarevsky, “Learning-based computer vision with Intel’s open source computer vision library,” Intel Technol. J., Vol.9, No.2, pp. 119-130, May 2005.
- [9] D. Kim, S. Oh, and J.M. Rehg, “Traversability classification for ugv navigation: A comparison of patch and superpixel representations,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), (San Diego, CA), Oct. 2007.
- [10] P. Felzenszwalb and D. P. Huttenlocher, “Efficient Graph-Based Image Segmentation,” Int. J. of Computer Vision, Vol.59, pp. 167-181, 2004.
- [11] S. Ghosh and J. Mulligan, “A Segmentation Guided Label Propagation Scheme for Autonomous Navigation,” IEEE Int. Conf. on Robotics and Automation, 2010.
- [12] R. Hadsell, P. Sermanet, M. Scoffier, A. Erkan, K. Kavukcuoglu, U. Muller, and Y. LeCun, “Learning long-range vision for autonomous off-road driving,” J. of Field Robotics, 2009.
- [13] M. Bajracharya, A. Howard, L. H. Matthies, B. Tang, and M. Turmon, “Autonomous Off-Road Navigation with End-to-End Learning for the LAGR Program,” J. of Field Robotics, 2009.
- [14] M. J. Procopio, J. Mulligan, and G. Grudic, “Coping with Imbalanced Data for Improved Terrain Prediction in Autonomous Outdoor Robot Navigation,” IEEE Int. Conf. on Robotics and Automation, 2010.
- [15] F. W. Rauskolb, K. Berger, C. Lipski et al., “Caroline: An Autonomously Driving Vehicle for Urban Environments,” J. of Field Robotics, Vol.23, No.3, pp. 161-182, October 2007.
- [16] B. Douillard, A. Brooks, F. T. Ramos, and H. F. Durrant-Whyte, “Combining Laser and Vision for 3D Urban Classification,” Proc. Neural Information Processing Systems Conference (NIPS) 2009, workshop: Learning from Multiple Sources with Applications to Robotics, 2009.
- [17] I. Posner, D. Schroeter, and P. Newman “Online generation of scene descriptions in urban environments,” Robotics and Autonomous Systems, Vol.56, No.11, pp. 901-914, Semantic Knowledge in Robotics, 2008.
- [18] I. Posner, M. Cummins, and P. Newman, “A generative framework for fast urban labeling using spatial and temporal context,” Vol.26 Issue 2-3, April 2009.
- [19] M. Varma and A. Zisserman, “Texture classification: Are filter banks necessary?” Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Vol.2, pp. 691-696, 2003.
- [20] T. Ojala, M. Pietikäinen, and D. Harwood, “A Comparative Study of Texture Measures with Classification Based on Feature Distributions,” Pattern Recognition, Vol.29, pp. 51-59, 1996.
- [21] M. Blas, M. Agrawal, K. Konolige, and S. Aravind, “Fast color/texture segmentation for outdoor robots,” in Proc. Int. Conf. Intelligent Robots and Systems, 2008.
- [22] Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images,” In Int. Conf. on Computer Vision, Vol.1, pp. 105-112, July 2001.
- [23] Y. Iwashita, R. Kurazume, K. Hara, T. Tsuji, and T. Hasegawa, “Fast Implementation of Level Set Method and Its Real-time Applications,” Proc. 2004 IEEE Int. Conf. on Systems, Man, and Cybernetics, 2004.
- [24] S. Liapis, E. Sifakis, and G. Tziritas, “Color and/or Texture Segmentation using Deterministic Relaxation and Fast Marching Algorithms,” Proc. Int. Conf. on Pattern Recognition, Vol.3, pp. 621-624, Sep. 2000.
- [25] S. Thrun, M. Montemerlo, and A. Aron, “Probabilistic Terrain Analysis For High-Speed Desert Driving,” Proc. Robotics Science and Systems, Philadelphia, PA, USA, August 16-19, 2006.
- [26] M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in computational stereo,” TPAMI, Vol.25, No.8, pp. 993-1008, 2003.
- [27] Y. Boykov and V. Komolgorov, “An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision,” Proc. Third Int. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, 2001.
- [28] S. Osher and J. A. Sethian, “Fronts propagating with curvaturedependent speed: Algorithms based on Hamilton-Jacobi formulations,” J. of Computational Physics, Vol.79, Issue 1, pp. 12-49, November 1988.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2012 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.