Paper:
Rapid Short-Time Path Planning for Phase Space
Chyon Hae Kim*, Hiroshi Tsujino*, and Shigeki Sugano**
*Honda Research Institute Japan Co., Ltd., 8-1 Honcho, Wako-shi, Saitama 351-0188, Japan
**Department of Mechanical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- [1] J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “Time-optimal control of robotic manipulators along specified paths,” The Int. J. of Robotics Research, Vol.4, No.3, pp. 3-17, 1985.
- [2] J. E. Bobrow, “Optimal robot path planning using the minimumtime criterion,” IEEE Trans. on Robotics and Automation, Vol.4, No.4, pp. 443-450, 1988.
- [3] K. G. Shin and N. D. McKa, “Minimum-time control of robotic manipulators with geometric path constraints,” IEEE Trans. on Automatic Control, Vol.30, No.5, pp. 531-541, 1985.
- [4] K. G. Shin and N. D. McKay, “A dynamic programming approach to trajectory planning of robotic manipulators,” IEEE Trans. on Automatic Control, Vol.31, No.6, pp. 491-500, 1986.
- [5] D. Verscheure, B. Demeulenaere, J. Swevers, J. D. Schutter, and M. Diehl, “Time-Energy Optimal Path Tracking for Robots: a Numerically Efficient Optimization Approach,” IEEE Int. Workshop on Advanced Motion Control (AMC), 2008.
- [6] Y. Suzuki, S. Thompson, and S. Kagami, “High-Speed Planning and Reducing Memory Usage of a Precomputed Search Tree Using Pruning,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2009.
- [7] A. Eele and A. Richards, “Rapid Updating for Path-Planning using Nonlinear Branch-and-Bound,” IEEE Int. Conf. on Robotics and Automation (ICRA), 2010.
- [8] S. M. LaValle and J. J. Kuffner, Jr., “Rapidly-Exploring Random Trees: Progress and Prospects,” Algorithmic and Computational Robotics: New Directions, pp. 293-308, 2001.
- [9] L. E. Kavraki, P. Svestka, J. Latombe, and M. H. Overmars, “Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces,” IEEE Trans. on Robotics and Automation, Vol.12, No.4, 1996.
- [10] E. Yoshida, C. Esteves, I. Belousov, J. Laumond, T. Sakaguchi, and K. Yokoi, “Planning 3-D Collision-Free Dynamic Robotic Motion Through Iterative Reshaping,” IEEE Trans. on Robotics, Vol.24, No.5, 2008.
- [11] Z. Shiller, “On Computing the Global Time-Optimal Motions of Robotics Manipulators in the Presence of Obstacles,” IEEE Trans. on Robotics and Automation, Vol.7, No.6, 1991.
- [12] G. Sahar and J. M. Hollerbach, “Planning of Minimum-Time Trajectories for Robot Arms,” In Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA), 1985.
- [13] J. Phillips, N. Bedrossian, and L. E. Kavraki, “Guided Expansive Spaces Trees: A Search Strategy for Motion- and Cost-Constrained State Spaces,” Proc. of IEEE Int. Conf. on Robotics and Automation, 2004.
- [14] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic Motion Planning,” J. of the ACM (JACM), Vol.40, pp. 1048-1066, 1993.
- [15] P. S. Huang, “Planning For Dynamic Motions Using a Search Tree,” Graduate Thesis at Toronto University, 1996.
- [16] S. M. LaValle and J. J. Kuffner, Jr., “Randomized Kinodynamic Planning,” J. of Robotics Research, Vol.20, No.5, pp. 378-400, 2001.
- [17] H. Ritter and K. Schulten, “Planning a Dynamic Trajectory via Path Finding in Discretized Phase Space,” Lecture Notes in Computer Science, 1987.
- [18] Y. Tazaki and J. Imura, “Graph-based Model Predictive Control of a Planar Bipedal Robot,” Int. Symposium on Mathematical Theory of Networks and Systems, pp. 128-133, 2006.
- [19] Y. Tazaki and J. Imura, “Approximately Bisimilar Discrete Abstractions of Nonlinear Systems Using Variable-resolution Quantizers,” Proc. of American Control Conf., 2010.
- [20] D. J. Block, “Mechanical Design and Control of the Pendubot,” thesis of University of Illinois, 1991.
- [21] I. Fantoni, R. Lozano, and M. W. Spong, “Energy Based Control of the Pendubot,” IEEE Trans. of Automatic Control, Vol.45, No.4, 2000.
- [22] R. M. Murray and J. Hauser, “Nonlinear controllers for nonintegrable systems: The Acrobot example,” In Proc. of the American Control Conf., Vol.1, pp. 669-671, 1990.
- [23] M. W. Spong, “The Swing Up Control problem For The Acrobot,” IEEE Control System Magazine, Vol.15, No.1, pp. 45-55, 1995.
- [24] G. Boone, “Minimum Time Control of the Acrobot,” Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 3281-3287, 1997.
- [25] M. Nishimura, J. Yoshimoto, and S. Ishii, “Acrobot Control by Learning the Switching ofMultiple Controllers,” J. of Artificial Life and Robotics, Vol.9, No.2, pp. 67-71, 2005.
- [26] R. Haschke, E. Weitnauer, and H. Riter, “On-Line Planning of Time-Optimal, Jerk-Limited Trajectories,” Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2008.
- [27] J. Barraquand and J. Latombe, “Nonholonomic Multibody Mobile Robots: Controllability and Motion Planning in the Presence of Obstacles,” Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA), 1991.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2011 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.