JRM Vol.22 No.5 pp. 623-630
doi: 10.20965/jrm.2010.p0623


2DOF Magnetically Driven Microtool for Soft Peeling of Zona Pellucida

Yoko Yamanishi*, Tomohiro Kawahara**, Tomohiro Iyanagi***,
Masaya Hagiwara**, Takehito Mizunuma***, Naoki Inomata**,
Shogo Kudo**, and Fumihito Arai***

*JST PRESTO, Department of Mechanical Science & Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

**Nagoya University, Japan

***Tohoku University, 6-6-01 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan

February 20, 2010
June 10, 2010
October 20, 2010
cell manipulation, magnetically driven microtool, biochip, photolithography, actuator

We automated removal of the swine oocyte zona pellucida using a 2DOF magnetically driven microtool (MMT) on a microfluidic chip. Multiple oocytes can be manipulated simultaneously highly stably, providing strong advantages over conventional manual manipulation using pipetting. We propose automating this process by activating a soft polymer microtool on a disposable microfluidic chip to stably mass-produce peeled oocytes – a breakthrough in high throughput and effective oocyte manipulation in cloning and fertility treatment.

Cite this article as:
Yoko Yamanishi, Tomohiro Kawahara, Tomohiro Iyanagi,
Masaya Hagiwara, Takehito Mizunuma, Naoki Inomata,
Shogo Kudo, and Fumihito Arai, “2DOF Magnetically Driven Microtool for Soft Peeling of Zona Pellucida,” J. Robot. Mechatron., Vol.22, No.5, pp. 623-630, 2010.
Data files:
  1. [1] S. Suzuki and E. Sato, “Ovum Research,” (Yokendo Ltd, Tokyo), pp. 362, 2001.
  2. [2] Y. Yamanishi, S. Sakuma, K. Onda, and F. Arai, “Biocompatible Polymeric Magnetically Driven Microtool for Particle Sorting,” J. of Micro and Nano Mechatronics, Vol.4, No.1, pp. 49-57, 2008.
  3. [3] Y. Yamanishi, Y. Kihara, S. Sakuma, and F. Arai, “On-chip Droplet Dispensing by Magnetically Driven Microtool,” J. of Robotics and Mechatronics, Vol.21, No.2, pp. 229-235, 2009.
  4. [4] N. Inomata, T. Mizunuma, Y. Yamanishi, S. Kudo, and F. Arai, “Onchip Magnetically Driven Micro-robot for Enucleation of Oocyte,” 2009 Int. Symposium on Micromechatronics and Human Sciences (MHS), pp. 493-498, 2009.
  5. [5] H. C. Zeringue, D. J. Beebe, and M. B. Wheeler, “Removal of Cumulus from Mammalian Zygotes Using Microfulidic Techniques,” Biomedical Microdevices, Vol.3, pp. 219-224, 2001.
  6. [6] S. Sakuma, Y. Yamanishi, F. Arai, T. Arai, A. Hasegawa, T. Tanikawa, A. Ichikawa, O. Satoh, A. Nakayama, H. Aso, M. Goto, S. Takahashi, and K. Matsukawa, “ALL-in-one Unified Microfluidic Chip for Automation of Embryonic Cell Manipulation,” The 13th Int. Conf. on Miniaturized Systems for Chemistry and Life Sciences, (µ-TAS), pp. 1883-1885.
  7. [7] A. Ichikawa, T. Tanikawa, K. Matsukawa, S. Takahashi, and K. Ohba, “Fluorescent Monitoring Using Microfludics Chip and Development of Syringe Pump for Automation of Enucleation to Automate Cloning,” IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 2231-2236, 2009.
  8. [8] K. D. Wells and A. M. Powell, “Blastomeres from Somatic Cell Nuclear Transfer Embryos Are Not Allocated Randomly in Chimeric Blastocysts,” Cloning, Vol.2, No.1, 2000.
  9. [9] “Rikanenpyo (Chronological Scientific Tables),” edited by National Astronomic Observatory Japan, Maruzen, Tokyo, 2007. (in Japanese)

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Feb. 25, 2021