single-rb.php

JRM Vol.22 No.5 pp. 623-630
doi: 10.20965/jrm.2010.p0623
(2010)

Paper:

2DOF Magnetically Driven Microtool for Soft Peeling of Zona Pellucida

Yoko Yamanishi*, Tomohiro Kawahara**, Tomohiro Iyanagi***,
Masaya Hagiwara**, Takehito Mizunuma***, Naoki Inomata**,
Shogo Kudo**, and Fumihito Arai***

*JST PRESTO, Department of Mechanical Science & Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

**Nagoya University, Japan

***Tohoku University, 6-6-01 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan

Received:
February 20, 2010
Accepted:
June 10, 2010
Published:
October 20, 2010
Keywords:
cell manipulation, magnetically driven microtool, biochip, photolithography, actuator
Abstract

We automated removal of the swine oocyte zona pellucida using a 2DOF magnetically driven microtool (MMT) on a microfluidic chip. Multiple oocytes can be manipulated simultaneously highly stably, providing strong advantages over conventional manual manipulation using pipetting. We propose automating this process by activating a soft polymer microtool on a disposable microfluidic chip to stably mass-produce peeled oocytes – a breakthrough in high throughput and effective oocyte manipulation in cloning and fertility treatment.

Cite this article as:
Y. Yamanishi, T. Kawahara, T. Iyanagi, <. Hagiwara, T. Mizunuma, N. Inomata, <. Kudo, and F. Arai, “2DOF Magnetically Driven Microtool for Soft Peeling of Zona Pellucida,” J. Robot. Mechatron., Vol.22, No.5, pp. 623-630, 2010.
Data files:
References
  1. [1] S. Suzuki and E. Sato, “Ovum Research,” (Yokendo Ltd, Tokyo), pp. 362, 2001.
  2. [2] Y. Yamanishi, S. Sakuma, K. Onda, and F. Arai, “Biocompatible Polymeric Magnetically Driven Microtool for Particle Sorting,” J. of Micro and Nano Mechatronics, Vol.4, No.1, pp. 49-57, 2008.
  3. [3] Y. Yamanishi, Y. Kihara, S. Sakuma, and F. Arai, “On-chip Droplet Dispensing by Magnetically Driven Microtool,” J. of Robotics and Mechatronics, Vol.21, No.2, pp. 229-235, 2009.
  4. [4] N. Inomata, T. Mizunuma, Y. Yamanishi, S. Kudo, and F. Arai, “Onchip Magnetically Driven Micro-robot for Enucleation of Oocyte,” 2009 Int. Symposium on Micromechatronics and Human Sciences (MHS), pp. 493-498, 2009.
  5. [5] H. C. Zeringue, D. J. Beebe, and M. B. Wheeler, “Removal of Cumulus from Mammalian Zygotes Using Microfulidic Techniques,” Biomedical Microdevices, Vol.3, pp. 219-224, 2001.
  6. [6] S. Sakuma, Y. Yamanishi, F. Arai, T. Arai, A. Hasegawa, T. Tanikawa, A. Ichikawa, O. Satoh, A. Nakayama, H. Aso, M. Goto, S. Takahashi, and K. Matsukawa, “ALL-in-one Unified Microfluidic Chip for Automation of Embryonic Cell Manipulation,” The 13th Int. Conf. on Miniaturized Systems for Chemistry and Life Sciences, (µ-TAS), pp. 1883-1885.
  7. [7] A. Ichikawa, T. Tanikawa, K. Matsukawa, S. Takahashi, and K. Ohba, “Fluorescent Monitoring Using Microfludics Chip and Development of Syringe Pump for Automation of Enucleation to Automate Cloning,” IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 2231-2236, 2009.
  8. [8] K. D. Wells and A. M. Powell, “Blastomeres from Somatic Cell Nuclear Transfer Embryos Are Not Allocated Randomly in Chimeric Blastocysts,” Cloning, Vol.2, No.1, 2000.
  9. [9] “Rikanenpyo (Chronological Scientific Tables),” edited by National Astronomic Observatory Japan, Maruzen, Tokyo, 2007. (in Japanese)

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Dec. 02, 2022