single-rb.php

JRM Vol.22 No.5 pp. 594-600
doi: 10.20965/jrm.2010.p0594
(2010)

Paper:

Microfluidic Device with Integrated Glucose Sensor for Cell-Based Assay in Toxicology

Hiroshi Kimura*, Hirokazu Takeyama*, Kikuo Komori*,
Takatoki Yamamoto**, Yasuyuki Sakai*, and Teruo Fujii*

*Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan

**Department of Mechanical and Control Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan

Received:
February 26, 2010
Accepted:
June 8, 2010
Published:
October 20, 2010
Keywords:
cell-based assay, microfluidic device, electrochemical sensor, glucose, Hep G2 cell
Abstract

We have developed a cell-based assay platform using a microfluidic device integrating a glucose sensor into a cell culture device with closed-loop perfusion. Online measurement of cell kinetic change associated with cell status change was achieved by measuring glucose concentration change in the device with a cell exposed to a toxic material. The cell-based assay platform, which is integrated with a sensor and a perfusion system, was expected to improve measurement accuracy and efficiency, leading to the discovery of new tools in such wide-ranging fields as drug discovery, life sciences, and medical research.

Cite this article as:
Hiroshi Kimura, Hirokazu Takeyama, Kikuo Komori,
Takatoki Yamamoto, Yasuyuki Sakai, and Teruo Fujii, “Microfluidic Device with Integrated Glucose Sensor for Cell-Based Assay in Toxicology,” J. Robot. Mechatron., Vol.22, No.5, pp. 594-600, 2010.
Data files:
References
  1. [1] J. T. Borenstein, H. Terai, K. R. King, E. J. Weinberg, M. R. Kaazempur-Mofrad, and J. P. Vacanti, “Microfabrication technology for vascularized tissue engineering,” Biomedical Microdevices, Vol.4, pp. 167-175, 2002.
  2. [2] T. H. Park and M. L. Shuler, “Integration of cell culture and microfabrication technology,” Biotechnol. Prog., Vol.19, pp. 243-253, Mar.-Apr. 2003.
  3. [3] J. Park, F. Berthiaume, M. Toner, M. L. Yarmush, and A. W. Tilles, “Microfabricated grooved substrates as platforms for bioartificial liver reactors,” Biotechnol. Bioeng., Vol.90, pp. 632-644, Jun. 5, 2005.
  4. [4] E. Leclerc, K. S. Furukawa, F. Miyata, Y. Sakai, T. Ushida, and T. Fujii, “Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications,” Biomaterials, Vol.25, pp. 4683-4690, Aug. 2004.
  5. [5] S. Ostrovidov, J. Jiang, Y. Sakai, and T. Fujii, “Membrane-based PDMS microbioreactor for perfused 3D primary rat hepatocyte cultures,” Biomed. Microdevices, Vol.6, pp. 279-287, Dec. 2004.
  6. [6] S. Martinoia, N. Rosso, M. Grattarola, L. Lorenzelli, B. Margesin, and M. Zen, “Development of ISFET array-based microsystems for bioelectrochemical measurements of cell populations,” Biosens. Bioelectron., Vol.16, pp. 1043-1050, Dec. 2001.
  7. [7] J. Perdomo, H. Hinkers, C. Sundermeier, W. Seifert, O. Martinez Morell, and M. Knoll, “Miniaturized real-time monitoring system for L-lactate and glucose using microfabricated multi-enzyme sensors,” Biosens. Bioelectron., Vol.15, pp. 515-522, 2000.
  8. [8] I. Moser, G. Jobst, and G. A. Urban, “Biosensor arrays for simultaneous measurement of glucose, lactate, glutamate, and glutamine,” Biosens. Bioelectron., Vol.17, pp. 297-302, Apr. 2002.
  9. [9] G. Piechotta, J. Albers, and R. Hintsche, “Novel micromachined silicon sensor for continuous glucose monitoring,” Biosens. Bioelectron., Vol.21, pp. 802-808, Nov. 15, 2005.
  10. [10] A. M. Otto, M. Brischwein, A. Niendorf, T. Henning, E. Motrescu, and B. Wolf, “Microphysiological testing for chemosensitivity of living tumor cells with multiparametric microsensor chips,” Cancer Detect. Prev., Vol.27, pp. 291-296, 2003.
  11. [11] I. A. Ges, B. L. Ivanov, A. A. Werdich, and F. J. Baudenbacher, “Differential pH measurements of metabolic cellular activity in nl culture volumes using microfabricated iridium oxide electrodes,” Biosens. Bioelectron., Vol.22, pp. 1303-1310, Feb. 15, 2007.
  12. [12] Y. Sakai, T. Fujii, and A. Sakoda, “Feasibility of in vitro multicompartment Cell Culture Systems for Toxicokinetic analysis in Humans,” Folia Pharmacol. Jpn., Vol.125, pp. 343-349, 2005.
  13. [13] H. Kimura, M. Nishikawa, T. Yamamoto, Y. Sakai, and T. Fujii, “Microfluidic Perfusion Culture of Human Hepatocytes,” J. Robotics and Mechatronics, Vol.19, pp. 550-556, 2007.
  14. [14] K. S. Ryu, K. Shaikh, E. Goluch, Z. Fan, and C. Liu, “Micro magnetic stir-bar mixer integrated with parylene microfluidic channels,” Lab Chip, Vol.4, pp. 608-613, Dec. 2004.
  15. [15] A. K. Agarwal, S. S. Sridharamurthy, D. J. Beebe, and H. Jiang, “Programmable autonomous micromixers and micropumps,” J. Microelectromech. Syst., Vol.14, pp. 1409-1421, 2005.
  16. [16] K. Hosokawa, T. Fujii, and I. Endo, “Handling of picoliter liquid samples in a Poly(dimethylsiloxane)-based microfluidic device,” Anal. Chem., Vol.71, pp. 4781-4785, 1999.
  17. [17] N. Pereira Rodrigues, Y. Sakai, and T. Fujii, “Cell-based microfluidic biochip for the electrochemical real-time monitoring of glucose and oxygen,” Sensors and Actuators B: Chemical, Vol.132, pp. 608-613, Jun. 16, 2008.
  18. [18] H. Kimura, T. Yamamoto, H. Sakai, Y. Sakai, and T. Fujii, “An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models,” Lab Chip, Vol.8, pp. 741-746, May 2008.
  19. [19] Y. Sakai, T. Arai, A. Sakoda, and M. Suzuki, “Development of a simple double-layered cell culture system using Caco-2 and TIG-1 cells as a new cytotoxicity test,” Altern. Animal Test. Experiment., Vol.7, pp. 47-58, 2001.
  20. [20] T. Yoshida, R. Shirakashi, K. Takano, C. Provin, Y. Sakai, and T. Fujii, “Steady Measurement of HepG2 Energy Metabolic Rate,” Proc. of Thermal Engineering Conf., pp. 391-392, 2007.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Aug. 02, 2021