JRM Vol.22 No.5 pp. 587-593
doi: 10.20965/jrm.2010.p0587


Parallel Formation of Three-Dimensional Spheroid Using Microrotational Flow

Hiroki Ota and Norihisa Miki

Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohoama 223-8522, Japan

February 19, 2010
June 8, 2010
October 20, 2010
lab-on-a-chip, spheroid, microrotation flow, hepatocyte

We propose three-dimensional (3D) spheroid formation involving perfusion and a lab-on-a-chip containing spheroid-forming chamber arrays. Cells are collected forming a spheroid in the chamber in microrotation. We previously reported a single chamber form hepatic spheroids 130 to 430 µm in diameter, controlling size by varying chamber diameter and cell density. Here, we scaled the system up by a factor of 10 while maintaining size control of 180±30 µm in diameter. Results were comparable to those using a single-chamber device. Long-term culture confirmed that cells in the spheroid maintained viability and diameters did not change after 24 hours. The system is readily applicable for creating size-controlled spheroids ensuring reliable, predictable in vitro data for drug screening and biological research.

Cite this article as:
Hiroki Ota and Norihisa Miki, “Parallel Formation of Three-Dimensional Spheroid Using Microrotational Flow,” J. Robot. Mechatron., Vol.22, No.5, pp. 587-593, 2010.
Data files:
  1. [1] J. P. Shelby, D. S. Lim, J. S. Kuo, and D. T. Chiu, “Microfluidic systems: high radial acceleration in microvortices,” Nature, Vol.425, No.38, 2003.
  2. [2] E. Leclerc, Y. Sakai, and T. Fujii, “Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes,” Biotechnol Prog., Vol.20, pp. 750-755, 2004.
  3. [3] R. Z. Lin, L. F. Chou, C. C. Chien, and H. Y. Chang, “Dynamic analysis of hepatoma spheroid formation: roles of E-cadherin and beta1-integrin,” Cell Tissue Res., Vol.324, pp. 411-422, 2006.
  4. [4] H. Otsuka, A. Hirano, Y. Nagasaki, T. Okano, Y. Horiike, and K. Kataoka, “Two-dimensional multiarray formation of hepatocyte spheroids on a microfabricated PEG-brush surface,” Chem BioChem., Vol.5, pp. 850-855, 2004.
  5. [5] S. R. Khetani and S. N. Bhatia, “Microscale culture of human liver cells for drug development,” Nat. Biotechnol., Vol.26, pp. 120-126, 2008.
  6. [6] E. Eschbach, S. S. Chatterjee, M. Noldner, E. Gottwald, H. Dertinger, K. F. Weibezahn, and G. Knedlitschek, J. Cell Biochem, Vol.95, pp. 243-255, 2000.
  7. [7] I. L. Garcia, P. Vinas, and M. H. Cordoba, “Calibration in flame atomic-absorption spectrometry using a single standard and a gradient technique,” J. of Analytical Atomic Spectrometry, Vol.9, pp. 553-561, 1994.
  8. [8] J. Morales and M. L. Alpaugh, “Gain in cellular organization of inflammatory breast cancer: A 3D in vitro model that mimics the in vivo metastasis,” BMC Cancer, Vol.9, p. 462, 2009.
  9. [9] D. Khaitan, S. Chandna, and S. B. Dwarakanath, “Short-term exposure of multicellular tumor spheroids of a human glioma cell line to the glycolytic inhibitor 2-deoxy-D-glucose is more toxic than continuous exposure,” J Cancer Res Ther., Vol.1, pp. S67-73, 2009.
  10. [10] Y. S. Torisawa, B.Mosadegh, G. D. Luker, M. Morell, K. S. O’Shea, and S. Takayama, “Microfluidic hydrodynamic cellular patterning for systematic formation of co-culture spheroids,” Integr Biol (Camb), Vol.1, pp. 649-654, 2009.
  11. [11] M. Y. Zhang, P. J. Lee, P. J. Hung, T. Johnson, L. P. Lee, and M. R. Mofrad, “Microfluidic environment for high density hepatocyte culture,” Biomed Microdevices, Vol.10, pp. 117-121, 2008.
  12. [12] H. Ota, R. Yamamoto, K. Deguchi, Y. Tanaka, Y. Kazoe, Y. Sato, and N. Miki, “Three-dimensional spheroid-forming lab-on-a-chip using micro-rotational flow,” Sensors and Actuators B, Vol.147, pp. 359-365, 2010.
  13. [13] J. Fukuda, K. Okamura, K. Nakazawa, H. Ijima, Y. Yamashita, M. Shimada, K. Shirabe, E. Tsujita, K. Sugimachi, and K. Funatsu, “Differentiation effects by the combination of spheroid formation and sodium butyrate treatment in human hepatoblastoma cell line (Hep G2): a possible cell source for hybrid artificial liver,” Cell Transplant., Vol.12, pp. 51-58, 2003.
  14. [14] L. G. Griffith and M. A. Swartz, “Capturing complex 3D tissue physiology in vitro,” Nat Rev Mol Cell Biol., Vol.7, pp. 211-224, 2006.
  15. [15] E. Curcio, S. Salerno, G. Barbieri, L. De Bartolo, E. Drioli, and A. Bader, “Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system,” Biomaterials., Vol.28, pp. 5487-5497, 2007.
  16. [16] J. Alvarez-Perez, P. Ballesteros, and S. Cerdan, “Microscopic images of intraspheroidal pH by 1H magnetic resonance chemical shift imaging of pH sensitive indicators,” MAGMA, Vol.18, pp. 293-301, 2005.
  17. [17] K. Watanabe, “Ryuutairikigaku –Nagare to sonshitsu–,” Maruzen kabushikigaisya, 2002.
  18. [18] M. Koyama, I. Nanwa, and H. Oota, “Ryuutairikigaku ensyuu,” Gakukensya, 1987.
  19. [19] J. Fukuda, Y. Sakai, and K. Nakazawa, “Novel hepatocyte culture system developed using microfabrication and collagen/polyethylene glycol microcontact printing,” Biomaterials, Vol.27, pp. 1061-1070, 2006.
  20. [20] Y. S. Torisawa, B. H. Chueh, D. Huh, P. Ramamurthy, T. M. Roth, K. F. Barald, and S. Takayama, “Efficient formation of uniformsized embryoid bodies using a compartmentalized microchannel device,” Lab Chip, Vol.7, pp. 770-776, 2007.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Mar. 01, 2021