JRM Vol.22 No.5 pp. 579-586
doi: 10.20965/jrm.2010.p0579


Development of Time-Programmed, Dual-Release System Using Multilayered Fiber Mesh Sheet by Sequential Electrospinning

Tatsuya Okuda and Satoru Kidoaki

Division of Biomolecular Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan

April 3, 2010
July 26, 2010
October 20, 2010
drug delivery system, multilayered nanofiber meshes, sequential chemotherapy, sequential electrospinning, time-programmed sustained release

In general clinical pharmacotherapy, multidrug therapy is performed with a view to enhancing drug efficacy or reducing drug’s side effects. It is essential that a Drug Delivery System (DDS) for plural drugs be developed to make multidrug therapy more functional and effective. In this review, we summarize prior DDS research and recent developmental efforts for multi-DDS, as well as of the electrospinning (ELSP) method, which has recently attracted great attention as preparation technique of fine polymer fiber in various fields. We also describe a time-programmed dual-drug controlled-release system using multilayered fiber mesh sheets that have been fabricated by a sequential ELSP method we developed. In addition, we address developmental approaches for DDS devices using micromachining technologies (MEMS) as well as issues and future expectations for robotics in DDS research.

Cite this article as:
Tatsuya Okuda and Satoru Kidoaki, “Development of Time-Programmed, Dual-Release System Using Multilayered Fiber Mesh Sheet by Sequential Electrospinning,” J. Robot. Mechatron., Vol.22, No.5, pp. 579-586, 2010.
Data files:
  1. [1] M. A. Jacobson, “Valaciclovir (BW256U87): the L-valyl ester of acyclovir,” J. Med. Virol., Suppl. Vol.1., pp. 150-153, 1993.
  2. [2] E. Soussan, S. Cassel, M. Blanzat, and I. Rico-Lattes, “Drug delivery by soft matter: matrix and vesicular carrier,” Angew. Chem. Int. Ed., Vol.48, pp. 274-288, 2009.
  3. [3] F. Zhang, Q. Wu, Z. C. Chen, M. Zhang, and X. F. Lin, “Hepatictargeting microcapsules construction by self-assembly of bioactive galactose-branched polyelectrolyte for controlled drug release system,” J. Colloid Interface Sci., Vol.317, pp. 477-484, 2008.
  4. [4] M. Nishikawa, A. Kamijo, T. Fujita, Y. Takakura, H. Sezaki, and M. Hashida, “Synthesis and pharmacokinetics of a new liverspecific carrier, glycosylated carboxymethyl-dextran, and its application to drug targeting,” Pharm. Res., Vol.10, pp. 1253-1261, 1993.
  5. [5] Y. Hattori, S. Kawakami, K. Nakamura, F. Yamashita, and M. Hashida, “Efficient gene transfer into macrophages and dendritic cells by in vivo gene delivery with mannosylated lipoplex via the intraperitoneal route,” J. Pharmacol. Exp. Ther., Vol.318, pp. 828-834, 2006.
  6. [6] M. Mitra, A. K.Mandal, T. K. Chatterjee, and N. Das, “Targeting of mannosylated liposome incorporated benzyl derivative of Penicillium nigricans derived compound MT81 to reticuloendothelial systems for the treatment of visceral leishmaniasis,” J. Drug Target., Vol.13, pp. 285-293, 2005.
  7. [7] H. Wang, P. Zhao, X. Liang, X. Gong, T. Song, R. Niu, and J. Chang, “Folate-PEG coated cationic modified chitosan-cholesterol liposomes for tumor-targeted drug delivery,” Biomaterials, Vol.31, pp. 4129-4138, 2010.
  8. [8] S. Gottschalk, R. J. Cristiano, L. C. Smith, and S. L. Woo, “Folate receptor mediated DNA delivery into tumor cells: potosomal disruption results in enhanced gene expression,” Gene Ther., Vol.1, pp. 185-191, 1994.
  9. [9] A. L. Z. Lee, Y. Wang, H. Y. Cheng, S. Pervaiz, and Y. Y. Yang, “The co-delivery of paclitaxel and Herceptin using cationic micellar nanoparticles,” Biomaterals, Vol.30, pp. 919-927, 2009.
  10. [10] E. Waelti, N. Wegmann, R. Schwaninger, A. Wetterwald, C. Wingenfeld, B. Rothen-Rutishauser, and C. D. Gimmi, “Targeting her-2/neu with antirat Neu virosomes for cancer therapy,” Cancer Res., Vol.61, pp. 427-444, 2002.
  11. [11] V. Torchilin, “Multifunctional and stimuli-sensitive pharmaceutical nanocarrier,” Eur. J. Pharm. Biopharm. Vol.71, pp. 431-444, 2009.
  12. [12] H. Maeda, T. Sawa, and T. Konno, “Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS,” J. Control. Release, Vol.74, pp. 47-61, 2001.
  13. [13] N. D. James, R. J. Coker, D. Tomlinson, J. R. Harris, M. Gompels, A. J. Pinching, and J. S. Stewart, “Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi’s sarcoma in AIDS,” Clin. Oncol. (R. Coll. Radiol.), Vol.6, pp. 294-296, 1994.
  14. [14] S. de Marie, R. Janknegt, and I. A. J. M. Bakker-Woudenberg, “Clinical use of liposomal and lipid-complexed amphotericin B,” J. Antimicrob. Chemother., Vol.33, pp. 907-916, 1994.
  15. [15] J. R. Bertino, W. L. Sawicki, C. A. Lindquist, and V. S. Gupta, “Schedule-dependent antitumor effects of methotrexate and 5-fluorouracil,” Cancer Res., Vol.37, pp. 327-328, 1977.
  16. [16] J. S. Lee, J. W. Bae, Y. K. Joung, S. J. Lee, D. K. Han, and K. D. Park, “Controlled dual release of basic fibroblast growth factor and indomethacin from heparin-conjugated polymeric micelle,” Int. J. Pharm., Vol.346, pp. 57-63, 2008.
  17. [17] M. Konishi, Y. Tabata, M. Kariya, H. Hosseinkhani, A. Suzuki, K. Fukuhara, M. Mandai, K. Takakura, and S. Fujii, “In vivo anti-tumor effect of dual release of cisplatin and adriamycin from biodegradable gelatin hydrogel,” J. Control. Release, Vol.103, pp. 7-19, 2005.
  18. [18] L. Wei, C. Cai, J. Lin, and T. Chen, “Dual-drug delivery system based on hydrogel/micelle composites,” Biomaterials, Vol.30, pp. 2606-2613, 2009.
  19. [19] W. Xia, J. Chang, J. Lin, and J. Zhu, “The pH-controlled dual-drug release from mesoporous bioactive glass/polypeptide graft copolymer nanomicelle composites,” Eur. J. Pharm. Biopharm., Vol.69, pp. 546-552, 2008.
  20. [20] R. Ishino, H. Yoshino, Y. Hirakawa, and K. Noda, “Design and preparation of pulsatile release tablet as a new oral drug delivery system,” Chem. Pharm. Bull., Vol.40, pp. 3036-3041, 1992.
  21. [21] S. Narisawa, M. Nagata, C. Danyoshi, H. Yoshino, K. Murata, Y. Hirakawa, and K. Noda, “An organic acid-induced sigmoidal release system for oral controlled-release preparations,” Pharm. Res., Vol.11, pp. 111-116, 1994.
  22. [22] D. S. Katti, K. W. Robinson, F. K. Ko, and C. T. Laurencin, “Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters,” J. Biomed. Mater. Res. B Appl. Biomater., Vol.70, pp. 286-296, 2004.
  23. [23] J. Xie and C. H. Wang, “Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro,” Pharm. Res., Vol.23, pp. 1817-1826, 2006.
  24. [24] H. Qi, P. Hu, J. Xu, and A. Wang, “Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment,” Biomacromolecules, Vol.7, pp. 2327-2330, 2006.
  25. [25] Z.-M. Huang, C.-L. He, A. Yang, Y. Zhang, X.-J. Han, J. Yin, and Q. Wu, “Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning,” J. Biomed. Mater. Res. A, Vol.77, pp. 169-179, 2006.
  26. [26] Y. Yang, X. Li, M. Qi, S. Zhou, and J. Weng, “Release pattern and structural integrity of lysozyme encapsulated in core-sheath structured poly(DL-lactide) ultrafine fibers prepared by emulsion electrospinning,” Eur. J. Pharm. Biopharm., Vol.69, pp. 106-116, 2008.
  27. [27] H. Nie, B. W. Soh, Y.-C. Fu, and C.-H. Wang, “Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery,” Biotech. Bioeng., Vol.99, pp. 223-234, 2008.
  28. [28] D. Liang, Y. K. Luu, K. Kim, B. S. Hsiao, M. Hadjiargyrou, and B. Chu, “In vitro no-viral gene delivery with nanofibrous scaffolds,” Nucleic Acids Res., Vol.33, p. e170, 2005.
  29. [29] R. A. Takur, C. A. Florek, J. Kohn, and B. B. Michniak, “Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing,” Int. J. Pharm., Vol.364, pp. 87-93, 2008.
  30. [30] X. Xu, X. Chen, Z. Wang, and X. Jing, “Ultrafine PEG-PLA fibers loaded with both paclitaxel and doxorubicin hydrochloride and their in vitro cytotoxicity,” Eur. J. Pharm. Biopharm., Vol.72, pp. 18-25, 2009.
  31. [31] S. Yan, L. Xiaoqiang, L. Shuiping, M. Xiumei, and S. Ramakrishna, “Controlled release of dual drugs from emulsion electrospun nanofibrous mats,” Colloids Surf. B Biointerfaces, 2009.
  32. [32] T. Okuda, K. Tominaga, and S. Kidoaki, “Time-programmed dual release formulation by multilayered drug-loaded nanofiber meshes,” J. Control. Release, Vol.143, pp. 258-264, 2010.
  33. [33] S. Kidoaki, I. K. Kwon, and T. Matsuda, “Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques,” Biomaterials, Vol.26, pp. 37-46, 2005.
  34. [34] J. T. Santini Jr., M. J. Cima, and R. Langer, “A controlled-release microchip,” Nature, Vol.397, pp. 335-338, 1999.
  35. [35] N. M. Elman, H. L. H. Duc, and M. J. Cima, “An implantable MEMS drug delivery device for rapid delivery in ambulatory emergency care,” Biomed. Microdevices, Vol.11, pp. 625-631, 2009.
  36. [36] A. J. Chung, Y. S. Huh, and D. Erickson, “A robust, electrochemically driven microwell drug delivery system for controlled vasopressin release,” Biomed. Microdevices, Vol.11, pp. 861-867, 2009.
  37. [37] X. Pi, H. Liu, K. Wei, Y. Lin, X. Zheng, and Z. Wen, “A novel remote controlled capsule for site-specific drug delivery in human GI tract,” Int. J. Pharm., Vol.382, pp. 160-164, 2009.
  38. [38] J. A. MacDiarmid, N. B. Amaro-Mugridge, J. Madrid-Weiss, I. Sedliarou, S. Wetzel, K. Kochar, V. N. Brahmbhatt, L. Phillips, S. T. Pattison, C. Petti, B. Stillman, R. M. Graham, and H. Brahmbhatt, “Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug,” Nat. Biothechnol. Vol.27, pp. 643-651, 2009.
  39. [39] S. Yadav, L. E. van Vleken, S. R. Little, and M. M. Amiji, “Evaluation of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells,” Cancer Chemother. Pharmacol., Vol.63, pp. 711-722, 2009.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Mar. 01, 2021