JRM Vol.22 No.5 pp. 568-578
doi: 10.20965/jrm.2010.p0568


Verification of Single-Molecule Imaging and Single-Molecule Measurements

Akihiko Ishijima, Hajime Fukuoka, and Yuichi Inoue

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

May 24, 2010
June 22, 2010
October 20, 2010
single-molecule imaging, single-molecule measurement, evanescence, Poisson distribution, molecular motor

Single-molecule imaging and single-molecule measurements constitute an integral part of life science researches. The research method, which allows direct measurements of individual motions and events of biomolecules, has contributed much to the development of life science research by providing us with numerous findings. It is left up to the judgment of researchers, however, whether the measurements really represent single-molecule events, which make it harder for more researchers to enter into this field. This paper deals with how single-molecule measurements were presented in past research outcomes and illustrates statistical-mechanical methods as well.

  1. [1] A. D. Mehta, R. S. Rock, M. Rief, J. A. Spudich, M. S. Mooseker, and R. E. Cheney, “Myosin-V is a processive actin-based motor,” Nature, Vol.400, pp. 590-593, 1999.
  2. [2] K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature, Vol.365, pp. 721-727, 1993.
  3. [3] H. Noji, R. Yasuda, M. Yoshida, and K. Kinosita, Jr., “Direct observation of the rotation of F1-ATPase,” Nature, Vol.386, pp. 299-302, 1997.
  4. [4] Y. Sowa, A. D. Rowe, M. C. Leake, T. Yakushi, M. Homma, A. Ishijima, and R. M. Berry, “Direct observation of steps in rotation of the bacterial flagellar motor,” Nature, Vol.437, pp. 916-919, 2005.
  5. [5] T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature, Vol.374, pp. 555-559, 1995.
  6. [6] R. D. Vale, T. Funatsu, D. W. Pierce, L., Romberg, Y. Harada, and T. Yanagida, “Direct observation of single kinesin molecules moving along microtubules,” Nature, Vol.380, pp. 451-453, 1996.
  7. [7] M. C. Leake, J. H. Chandler, G. H. Wadhams, F. Bai, R. M. Berry, and J. P. Armitage, “Stoichiometry and turnover in single, functioning membrane protein complexes,” Nature, Vol.443, pp. 355-358, 2006.
  8. [8] J. Howard, A. J. Hudspeth, and R. D. Vale, “Movement of microtubules by single kinesin molecules,” Nature, Vol.342, pp. 154-158, 1989.
  9. [9] M. P. Sheetz and S. C. Kuo, “Tracking nanometer movements of single motor molecules,” Methods Cell Biol., Vol.39, pp. 129-136, 1993.
  10. [10] J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature, Vol.368, pp. 113-119, 1994.
  11. [11] A. Ishijima, Y. Harada, H. Kojima, T. Funatsu, H. Higuchi, and T. Yanagida, “Single-molecule analysis of the actomyosin motor using nano-manipulation,” Biochem. Biophys. Res. Commun., Vol.199, pp. 1057-1063, 1994.
  12. [12] J. E. Molloy, J. E. Burns, J. Kendrick-Jones, R. T. Tregear, and D. C. White, “Movement and force produced by a single myosin head,” Nature, Vol.378, pp. 209-212, 1995.
  13. [13] H. Tanaka, A. Ishijima, M. Honda, K. Saito, and T. Yanagida, “Orientation dependence of displacements by a single one-headed myosin relative to the actin filament,” Biophys. J., Vol.75, pp. 1886-1894, 1998.
  14. [14] Y. Kimura, N. Toyoshima, N. Hirakawa, K. Okamoto, and A. Ishijima, “A kinetic mechanism for the fast movement of Chara myosin,” J. Mol. Biol., Vol.328, pp. 939-950, 2003.
  15. [15] A. Ishijima, H. Kojima, T. Funatsu, M. Tokunaga, H. Higuchi, H. Tanaka, and T. Yanagida, “Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin,” Cell, Vol.92, pp. 161-171, 1998.
  16. [16] K. Kitamura, M. Tokunaga, A. H. Iwane, and T. Yanagida, “A single myosin head moves along an actin filament with regular steps of 5.3 nanometres,” Nature, Vol.397, pp. 129-134, 1999.
  17. [17] N. J. Carter and R. A. Cross, “Mechanics of the kinesin step,” Nature, Vol.435, pp. 308-312, 2005.
  18. [18] J. W. Kerssemakers, E. L. Munteanu, L. Laan, T. L. Noetzel, M. E. Janson, and M. Dogterom, “Assembly dynamics of microtubules at molecular resolution,” Nature, Vol.442, pp. 709-712, 2006.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Sep. 20, 2017