JRM Vol.22 No.3 pp. 341-347
doi: 10.20965/jrm.2010.p0341


Disposable Inkjet Mechanism for Microdroplet Dispensing

Takehito Mizunuma*, Yoko Yamanishi**, Shinya Sakuma*, Hisataka Maruyama*, and Fumihito Arai*

*Department of Bioengineering and Robotics, Tohoku University, 6-6-01 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan

**PRESTO, Japan Science and Technology Agency (JST), 6-6-01 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan

October 30, 2009
February 21, 2010
June 20, 2010
inkjet, µTAS, microdevice, microfluidics

We succeeded in dispensing microdroplets using a disposable inkjet. The novelty of our device lies in the following points: (1) We used a glass-plate-bonded polydimethylsiloxane (PDMS) membrane to fabricate a leaf spring whose spring coefficient is 14 times higher than that of conventional PDMS membranes. This enabled droplets to be dispensed continuously up to 10 Hz when the membrane vibrated through the use of a multilayer piezoelectric actuator attached to the disposable PDMS chip. (2) The nozzle for droplet dispensing was fabricated from thick photoresist (SU-8) to obtain a hydrophobic surface preventing the production of undesired satellite droplets, yielding a droplet dispensing accuracy of ±16.2 µm. Droplets produced by the disposable nozzle, which was 100 µm in diameter, ranged from 95-105 µm at an applied voltage of 105 V.

  1. [1] K. Ahn, C. Kerbage, T. P. Hunt, R. M. Westervelt, D. R. Link, and D. A. Weitz, “Dielectrophoretic Manipulation of Drops for High-Speed Microfluidic Sorting Devices,” Appl. Phys. Lett., Vol.88, Issue 2, 2006.
  2. [2] T. Arakawa, Y. Shirasaki, T. Aoki, T. Funatsu, and S. Shoji “Three-Dimensional Sheath Flow Sorting Microsystem Using Thermosensitive Hydrogel,” Sensors and Actuators A: Physical, Vol.135, Issue 1, pp. 99-105, 2007.
  3. [3] S. Gaward, L. Schild, and P. Renaud, “Micromachined Impedence Spectroscopy Flow Cytometer for Cell Analysis and Particle Sizing,” Lab Chip, Vol.1, pp. 76-82, 2001.
  4. [4] M. H. Wu, J. P. G. Urban, Z. Cui, and Z. F. Cui, “Development of PDMS Microbioreactor with Well-Defined and Homogenous Culture Environment for Chondrocyte 3-D Culture,” Biomedical Microdevices, Vol.8, No.4, pp. 331-340, 2006.
  5. [5] J. Sang and S. Shoji, “A disposable, Dead Volume-Free and Leak-Free in-Plane PDMS Microvalve,” Sensors and Actuators A Physical, Vol.114, Issues 2-3, pp. 438-444, 2003.
  6. [6] T. Dvash, Y. Mayshar, H. Darr, M. McElhaney, D. Barker, O. Yanuka, K. J. Kotkow, L. L.Rubin, N. Benvenisty, and R. Eiges, “Temporal Gene Expression During Differentiation of Human Embryonic Stem Cells and Embryoid Bodies,” Human Reproduction, Vol.19, No.12, pp. 2875-2883, 2004.
  7. [7] S. Singh, V. Bhattacherjee, P. Mukhopadhyay, C. A. Worth, S. R. Wellhausen, C. P. Warner, R. M. Greene, and M. M. Pisano, “Fluorescence-Activated Cell Sorting of EGFP-Labeled Neural Crest Cells From Murine Embryonic Craniofacial Tissue,” J. of Biomedicine and Biotechnology, pp. 232-237, 2005.
  8. [8] U. Huseyin, T. Arai, Y. Mae, T. Takubo, and M. Yamada, “Miniaturized Vision System for Microfluidic Devices,” Advanced Robotics, Vol.22, No.11, pp. 1207-1222, 2008.
  9. [9] Y. Yamanishi, S. Sakuma, K. Onda, and F. Arai, “Biocompatible Polymeric Magnetically Driven Microtool for Particle Sorting,” J. of Micro and Nano Mechatronics, Vol.4, No.1, pp. 49-57, 2008.
  10. [10] Y. Yamanishi, Y. C. LIN, and F. Arai, “Magnetically modified PDMS microtools for micro particle manipulation,” Proc. of the 2007 IEEE/RSJ Int. Conf. on Intelligent Robotics and Systems, pp. 753-758, 2007.
  11. [11] A. Clow, P. Gaynor, and Björn Oback, “Coplanar Film Electrodes Facilitate Bovine Nuclear Transfer Cloning,” Biomed Microdevices, Vol.11, No.4, pp. 851-859, 2009.
  12. [12] M. R. Melamed, T. Lindmo, and M. L. Mendelsohn, “Flow Cytometry and Sorting,” 2nd ed. Wiley, New York, 1991.
    ISBN 0-471-56235-1
  13. [13] T. Lindmo, D. C. Peters, and R. G. Sweet, “Flow Sorters for Biological Cells,” Flow Cytometry and Sorting, 2nd ed.: Wiley-Liss, Inc., New York, pp. 145-169, 1990.
    ISBN 0-471-56235-1
  14. [14] K. Asano, Y. Funayama, K. Yatsuzuka, and Y. Higashiyama, “Spherical Particle Sorting by Using Droplet Deflection Technology,” J. of electrostatics, Vol.35, No.1, pp. 3-12, 1995.
  15. [15] M. Nakamura, Y. Nishiyama, and C. Henmi, “3D Micro-fabrication by Inkjet 3D Biofabrication for 3D Tissue Engineering,” Micro-Nano Mechatronics and Human Science, 2008, Int. Symposium on., pp. 451-456, 2008.
  16. [16] M. Nakamura, A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, and S. Takatani, “Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells,” Tissue, Eng., Vol.11, pp. 1658-1666, 2005.
  17. [17] H.-C. Wu, W.-S. Hwang, and H.-J. Lin, “Development of A Three-Dimensional Simulation System for Micro-Inkjet and Its Experimental Verification,” Materials Science and Engineering A, Vol.373, Issues 1-2, pp. 268-278, May 25, 2004.
  18. [18] P. Onnerfjord, J. Nilsson, L. Wallman, T. Laurell, and G. Marko-Varga, “Picoliter Sample Preparation in MALDI-TOF MS Using a Micromachined Silicon Flow-Through Dispenser,” Analytical Chemistry, Vol.70, No.22, pp. 4755-4760, November 15, 1998.
  19. [19] J. D. Lee, J. B. Yoon, J. K. Kim, H. J. Chung, C. S. Lee, H. D. Lee, H. J. Lee, C. K. Kim, and C. H. Han, “A Thermal Inkjet Printhead with a Monolithically Fabricated Nozzle Plate and Self-Aligned Ink Feed Hole,” J. MEMS , Vol.8, No.3, pp. 229-236, 1999.
  20. [20] T. Mizunuma, S. Sakuma, Y. Yamanishi, H. Maruyama, and F. Arai, “On-chip Micro-Droplet Dispenser With Disposable Structure,” µ-TAS2009, pp. 1778-1780, 2009.
  21. [21] A. Bransky, N. Korin, and S. Levenberg, “Experimental and Theoretical Study of Selective Protein Deposition Using Focused Micro Laminar Flows,” Biomedical Microdevices, Vol.10, No.3, pp. 421-428, 2008.
  22. [22] R. Rodriguez-Trujillo, O. Castillo-Fernandez, M. Garrido, M. Arundell, A. Valencia, and G. Gomila, “High-Speed Particle Detection in A Micro-Coulter Counter with Two-Dimensional Adjustable Aperture,” Biosensors and Bioelectronics, Vol.24, Issue 2, pp. 290-296, October 15, 2008.
  23. [23] T. D. Perroud, J. N. Kaiser, J. C. Sy, T. W. Lane, C. S. Branda, A. K. Singh, and K. D. Patel “Microfluidic-Based Cell Sorting of Francisella tularensis Infected Macrophages Using Optical Forces,” Analytical Chemistry, Vol.80, No.16, pp. 6365-6372, August 15, 2008.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Sep. 19, 2017