Paper:
Generating Circular Motion of a Human-Like Robotic Arm Using Attractor Selection Model
Atsushi Sugahara, Yutaka Nakamura, Ippei Fukuyori,
Yoshio Matsumoto, and Hiroshi Ishiguro
Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- [1] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduction,” MIT Press 1998.
- [2] G. Taga, Y. Yamaguchi, and H. Shimizu. “Self-organized control of biped locomotion by neural oscillator in unpredictable environment,” Biological Cybernetics, Vol.65, pp. 147-159, 1991.
- [3] C. Furusawa and K. Kaneko, “Emergence of Rules in Cell Society: Differentiation, Hierarchy, and Stability,” Bullein of Mathematical Biology, pp. 659-687.
- [4] T. Yanagida, M. Ueda, T. Murata, S. Esaki, and Y. Ishii, “Brown motion, fluctuation and life. Biosystems,” Vol.88, No.3, pp. 228-242, 2006.
- [5] A. Kashiwagi, I. Urabe, K. Kaneko, and T. Yomo, “Adaptive response of a gene network to environment changes by fitnessinduced attractor selection,” PLos ONE, 1, 2006.
- [6] E. Rimon and D. E. Koditschek. “Exact robot navigation using artificial potential functions,” IEEE Trans. on Robotics and Automation, Vol.8, pp. 501-518, 1992.
- [7] L. P. Kaelbling and W. A. Moore, “Reinforcement Learning: A Survey. Journel of Artificial Intelligence Research,” Vol.4, pp. 237-285, 1996.
- [8] I. Fukuyori, Y. Nakamura, Y. Matsumoto, and H. Ishiguro. “Flexible control mechanism for multi-DOF robotic arm based on biological fluctuation,” Int. Conf. on the simulation of adaptive behavior, pp. 22-31, 2008.
- [9] D. J. C. Mackay, “Information Theory, Inference, and Learning Algorithms,” Cambridge University Press, 2002.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2010 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.