Paper:
MPID Control Tuning for a Flexible Manipulator Using a Neural Network
Tamer Mansour, Atsushi Konno, and Masaru Uchiyama
Department of Aerospace Engineering, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza, Aoba-Ku, Sendai 980-8579, Japan
- [1] R. H. Jr., Cannon and E. Schmitz, “Initial Experiments on the End Point Control of a Flexible One-Link Robot,” Int. J. of Robotics Research, Vol.3, No.4, pp. 62-75, 1984.
- [2] S. S. Ge, T. H. Lee, and J. Q. Gong, “A Robust Distributed Controller of a Single-Link SCARA /Cartesian Smart Materials Robot,” Mechatronics, Vol.9, No.1, 1999, pp. 65-93, 1999.
- [3] D. Sun, J. Shan, Y. Su, H. Liu, and C. Lam, “Hybrid Control of a Rotational Flexible Beam Using Enhanced PD Feedback with a Non-Linear Differentiator and PZT Actuators,” Smart Mater. Struct., Vol.14, pp. 69-78, 2005.
- [4] V. Etxebarria, A. Sanz, and I. Lizarraga, “Control of a Lightweight Flexible Robotic Arm Using Sliding Modes,” Int. J. of Advanced Robotic Systems, Vol.2, No.2, pp. 103-110, 2005.
- [5] H. G. Lee, S. Arimoto, and F. Miyazaki, “Liapunov Stability Analysis for PDS Control of Flexible Multi-link Manipulators,” Proc. of the Conf. on Decision and Control, Austin, pp. 75-80, 1988.
- [6] T. Maruyama, C. Xu, A. Ming, and M. Shimojo, “Motion Control of Ultra-High-Speed Manipulator with a Flexible Link Based on Dynamically Coupled Driving,” J. of Robotics and Mechatronics, Vol.18, No.5, pp. 598-607, 2006.
- [7] F.Matsuno and A. Hayashi, “PDS Cooperative Control of Two Onelink Flexible Arms,” Proc. of the 2000 IEEE Int. Conf. on Robotics and Automation, San Francisco, pp. 1490-1495, 2000.
- [8] H. A. Talebi, K. Khorasani, and R. V. Patel, “Neural Network Based Control Schemes for Flexible Link Manipulators: Simulations and Experiments,” Neural Networks, Vol.11, pp. 1357-1377, 1998.
- [9] M. Kawato, K. Furukawa, and R. Suzuki, “A Hierarchical Neural Network Model for Control and Learning of Voluntary Movement,” Biological Cybernetics, Vol.57, pp. 169-185, 1987.
- [10] M. Isogai, F. Arai, and T. Fukuda, “Intelligent Sensor Fault Detection of Vibration Control for Flexible Structures,” J. of Robotics and Mechatronics, Vol.11, No.6, pp. 524-530, 1999.
- [11] T. Lianfang, J. Wang, and Z. Mao, “Constrained Motion Control of Flexible Robot Manipulators Based on Recurrent Neural Networks,” IEEE Trans. On Systems, Man, And Cybernetics Part B: Cybernetics, Vol.34, No.3, pp. 1541-1552, 2004.
- [12] X. P. Cheng and R. V. Patel, “Neural Network Based Tracking Control of a Flexible MacroMicro Manipulator System,” Neural Networks, Vol.16, pp. 271-286, 2003.
- [13] A. Yazdizadeh, K. Khorasani, and R. V. Patel, “Identification of a Two-Link Flexible Manipulator Using Adaptive Time Delay Neural Networks,” IEEE Trans. On Systems, Man, And Cybernetics Part B: Cybernetics, Vol.30, No.1, pp. 165-172, 2000.
- [14] T. Mansour, A. Konno, and M. Uchiyama, “Modified PID Control of a Single-Link Flexible Robot,” Advanced Robotics, Vol.22, pp. 433-449, 2008.
- [15] S. S. Ge, T. H. Lee, and G. Zhu, “Genetic Algorithm Tuning of Lyapunov-Based Controllers” An Application to a Single-Link Flexible Robot System,” IEEE Trans. On Industrial Electronics, Vol.43, No.5, pp. 567-573, 1996.
- [16] J. Principe, N. Euliano, and W. Lefebvre, “Neural and Adaptive Systems: Fundamentals Through Simulations,” John Wiley and Sons, New York, pp. 100-172, 2000.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2010 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.