single-rb.php

JRM Vol.21 No.3 pp. 311-316
doi: 10.20965/jrm.2009.p0311
(2009)

Paper:

Kinodynamic Planning for Humanoid Robots Walking on Uneven Terrain

Kensuke Harada, Mitsuharu Morisawa, Shin-ichiro Nakaoka, Kenji Kaneko, and Shuuji Kajita

Intelligent Systems Research Institute, National Institute of Advanced Industrial Science and Technology
1-1-1 Umezono, Tsukuba 305-8568, Japan

Received:
October 21, 2008
Accepted:
February 8, 2009
Published:
June 20, 2009
Keywords:
humanoid robot, motion planning, random sampling, biped gait
Abstract
For the purpose of realizing the humanoid robot walking on uneven terrain, this paper proposes the kinodynamic gait planning method where both kinematics and dynamics of the system are considered. We can simultaneously plan both the foot-place and the whole-body motion taking the dynamical balance of the robot into consideration. As a dynamic constraint, we consider the differential equation of the robot's CoG. To solve this constraint, we use a walking pattern generator. We randomly sample the configuration space to search for the path connecting the start and the goal configurations. To show the effectiveness of the proposed methods, we show simulation and experimental results where the humanoid robot HRP-2 walks on rocky cliff with hands contacting the environment.
Cite this article as:
K. Harada, M. Morisawa, S. Nakaoka, K. Kaneko, and S. Kajita, “Kinodynamic Planning for Humanoid Robots Walking on Uneven Terrain,” J. Robot. Mechatron., Vol.21 No.3, pp. 311-316, 2009.
Data files:
References
  1. [1] A. Takanishi, H. Lim, M. Tsuda, and I. Kato, “Realization of Dynamic Biped Walking Stabilized by Trunk Motion on a Sagittally Uneven Surface,” Proc. of IEEE Int. Workshop on Intelligent Robots and Systems (IROS '90), pp. 323-330, 1990.
  2. [2] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, “Biped Walking Pattern Generation by using Preview Control of Zero-Moment Point,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1620-1626, 2003.
  3. [3] K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa, “An Analytical Method on Real-Time Gait Planning for a Humanoid Robot,” Proc. of IEEE-RAS/RSJ Int. Conf. on Humanoid Robotics, 2004.
  4. [4] M. Morisawa, K. Harada, S. Kajita, S. Nakaoka, K. Fujiwara, F. Kanehiro, K. Kaneko, and H. Hirukawa, “Experimentation of Humanoid Walking Allowing Immediate Modification of Foot Place Based on Analytical Solution,” Proc. of 2007 IEEE Int. Conf. on Robotics and Automation, 2007.
  5. [5] M. Sanada, E. Yoshida, and K. Yokoi, “Passing under Obstacles with Humanoid Robots –Step Motion Planning for Sideway Passing under Motion–,” 8th Domestic Conf. of SI Dept. of SICE, 2007 (in Japanese).
  6. [6] K. Hauser, T. Bretl, and J.-C. Latombe, “Non-gaited Humanoid Locomotion Planning,” Proc. of IEEE Int. Conf. of Humanoid Robots, 2005.
  7. [7] K. Hauser, T. Bretl, K. Harada, and J.-C. Latombe, “Using motion primitives in probabilistic sample-based planning for humanoid robots,” Workshop on Algorithmic Foundations of Robotics (WAFR), 2006.
  8. [8] T. Sugihara and Y. Nakamura, “A Fast Online Gait Planning with Boundary Condition Relaxation for Humanoid Robots,” Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA'05), 2005.
  9. [9] S. Kagami, K. Nishiwaki, T. Kitagawa, T. Sugihiara, M. Inaba, and H. Inoue, “A Fast Generation Method of a Dynamically Stable Humanoid Robot Trajectory with Enhanced ZMP Constraint,” Proc. of IEEE Int. Conf. on Humanoid Robotics, 2000.
  10. [10] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Motion Planning for Humanoid Robots Under Obstacle and Dynamic Balance Constraints,” Proc. IEEE Int. Conf. on Robotics and Automation, 2001.
  11. [11] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Motion Planning for Humanoid Robots,” Int. Symposium of Robotics Research (ISRR'03), 2003.
  12. [12] J. Chestnutt, M. Lau, J. J. Kuffner, G. Cheung, J. Hodgins, and T. Kanade, “Footstep Planning for the ASIMO Humanoid Robot,” Proc. IEEE Int. Conf. on Robotics and Automation, 2005.
  13. [13] E. Yoshida, “Humanoid Motion Planning using Multi-Level DOF Exploitation based on Randomized Method,” Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2005.
  14. [14] E. Yoshida, I. Belousov, C. Esteves, and J.-P. Laumond, “Humanoid Motion Planning for Dynamic Tasks,” Proc. of IEEE-RAS Int. Conf. on Humanoid Robot, 2005.
  15. [15] J. J. Kuffner and S. M. Lavalle, “RRT-Connect: An Efficient Approach to Single-Query Path Planning,” Proc. IEEE Int. Conf. on Robotics and Automation, 2000.
  16. [16] S. M. Lavalle and J. J. Kuffner, “Randomized Kinodynamic Planning,” Proc. IEEE Int. Conf. on Robotics and Automation, 1999.
  17. [17] R. Kindel, D. Hsu, J. C. Latombe, and S. Rock, “Kinodynamic Motion Planning Amidst Moving Obstacles,” Proc. IEEE Int. Conf. on Robotics and Automation, 2000.
  18. [18] G. Sanchez and J. C. Latombe, “A Single-Query Bi-Directional Probabilistic Roadmap Planner with Lazy Collision Checking,” Int. Symposium of Robotics Research (ISRR'01), 2001.
  19. [19] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars, “Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces,” IEEE Transactions on Robotics and Automation, 12(4), 1996.
  20. [20] K. Harada, S. Hattori, H. Hirukawa, M. Morisawa, S. Kajita, and E. Yoshida, “Motion Planning for Walking Pattern Generation of Humanoid Robots,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2007.
  21. [21] H. Hirukawa, S. Hattori, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro, K. Fujiwara, and M. Morisawa, “A Universal Stability Criterion of the Foot Contact of Legged Robots,” Proc. IEEE Int. Conf. on Robotics and Automation, 2006.
  22. [22] http://robotics.stanford.edu/˜mitul/mpk/

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 19, 2024