single-rb.php

JRM Vol.19 No.5 pp. 569-576
doi: 10.20965/jrm.2007.p0569
(2007)

Paper:

In-Situ Formation of a Gel Microbead for Laser Micromanipulation of Microorganisms, DNA, and Viruses

Akihiko Ichikawa*, Ayae Honda**, Miho Ejima**,
Tamio Tanikawa*, Fumihito Arai***, and Toshio Fukuda****

*Ubiquitous Functions Research Group, Intelligent Systems Research Institute, Advanced Industrial Science and Technology, 1-1-1 Umezono, Tukuba-city, Ibaraki 305-8568, Japan

**Frontier Biosci., Dept. Engineering, Hosei University

***Graduate School of Engineering, Dept. Bioengineering and Robotics, Tohoku University

****Micro-Nano System Engineering, Dept. Engineering, Nagoya University

Received:
March 13, 2007
Accepted:
May 23, 2007
Published:
October 20, 2007
Keywords:
laser manipulation, micro-fluidics, DNA manipulation, microbe cultivation, virus manipulation
Abstract

We propose in situ formation of gel microbeads made of a thermoreversible hydrogel for indirect laser micromanipulation of microorganisms, DNA, and viruses. Using a 1064 nm laser, we irradiated an aqueous solution mixed with poly-(N-isopropylacrylamide) through a high- magnification lens, thereby forming a gel microbead through heating at the laser focus. The gel microbead, trapped by the laser, was used to indirectly manipulate micro- and nano-scale samples. Laser tweezers stably handle micro-scale object ranging from several tens of nm to several hundreds of µm. This cannot be done with nano-scale objects of a few nm, however, due to laser beam heating. We demonstrate how to manipulate microorganisms, DNA, and viruses indirectly using a gel microbead made from an aqueous poly-(N-isopropylacrylamide) solution. We reduced laser power for gel microbead formation, and used the gel microbead trapped by the laser to manipulate microorganisms, DNA, and viruses.

Cite this article as:
Akihiko Ichikawa, Ayae Honda, Miho Ejima,
Tamio Tanikawa, Fumihito Arai, and Toshio Fukuda, “In-Situ Formation of a Gel Microbead for Laser Micromanipulation of Microorganisms, DNA, and Viruses,” J. Robot. Mechatron., Vol.19, No.5, pp. 569-576, 2007.
Data files:
References
  1. [1] T. Katsuragi and Y. Tani, “Review: Single-cell sortig of microorganisms by flow or slide-based (including laser scanning) cytometry,” Acta Biotechnol., Vol.21, pp. 99-115, 2001.
  2. [2] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single beam gradient force optical trap for dielectric. particles,” Opt. Lett., Vol.11, pp. 288-290, 1986.
  3. [3] A. Ashkin and J. M. Dziedzic, Science, “Optical trapping and manipulation of viruses and bacteria,” Vol.235, pp. 1517-1520, 1987.
  4. [4] A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophysical J., Vol.61, pp. 569-582, 1992.
  5. [5] F. Arai, A. Ichikawa, M. Ogawa, T. Fukuda, K. Horio, and K. Itoigawa, “High Speed Separation System of Randomly Suspended Single Living Cells by Laser Trap and Dielectrophoresis,” Electrophoresis, Vol.22, No.2, pp. 283-288, 2001.
  6. [6] H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J., Vol.70, pp. 1529-1533, 1996.
  7. [7] K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J., Vol.77, pp. 2856-2863, 1999.
  8. [8] F. Arai, H. Maruyama, T. Sakami, A. Ichikawa, and T. Fukuda, “Pinpoint Injection of Microtools for Minimally Invasive Micromanipulation of Microbe by Laser Trap,” IEEE/ASME Trans. on Mechatronics, Vol.8-1, pp. 3-9, 2003.
  9. [9] F. Arai, K. Yoshikawa, T. Sakami, and T. Fukuda, “Synchronized laser micromanipulation of multiple targets along each trajectory by single laser,” Appl. Phys. Lett., Vol.85, No.19, pp. 4301-4303, 2003.
  10. [10] A. Ichikawa, F. Arai, K. Yoshikawa, T. Uchida, and T. Fukuda, “Insitu formation of a gel microbead for indirect laser micromanipulation of microorganisms,” Appl. Phys. Lett., Vol.87, pp. 191108-1 191108-3, 2005.
  11. [11] M. Ishikawa, H. Misawa, N. Kitamura, and H. Masuhara, “Poly (N-isopropylacrylamide) microparticle formation in water by infrared laser-induced photo-thermal phase transition,” Chem. Lett., pp. 481-484, 1993.
  12. [12] F. Arai, A. Ichikawa, T. Fukuda and T. Katsuragi, “Isolation and Extraction of Target Microbes Using Thermal Sol-gel Transformation,” Analyst, Vol.128, pp. 547-551, 2003.
  13. [13] M. Heskins and J. E. Guillet, “Solution properties of Poly (N-. isopropylacrylamide),” J. Macromol. Sci. Chem., A2(8), p. 1441, 1968.
  14. [14] H. Yoshioka, M. Mikami, Y. Mori, and E. Tsuchida, “A synthetic hydrogel with thermoreversible gelation 1: Preparation and rheological properties,” J. Macromol. Sci., A31(1), p. 113, 1994.
  15. [15] S. Katsura, A. Yamaguchi, K. Hirano, Y. Matsuzawa, and A. Mizuno, “Manipulation of Globular DNA Molecules for Sizing and Separation,” Electrophoresis, Vol.21, pp. 171-175, 2000.
  16. [16] K. Hirano, Y. Baba, Y. Matsuzawa, A. Mizuno, “Manupulation of single coiled DNA molecules by laser clustering of microparticles,” Appl. Phys. Lett., Vol.80, pp. 515-517, 2001.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 19, 2021