JRM Vol.19 No.2 pp. 198-204
doi: 10.20965/jrm.2007.p0198


3D Manipulation of Lipid Nanotubes with Functional Gel Microbeads

Fumihito Arai*, Toshiaki Endo**, Ryuji Yamauchi**,
Toshio Fukuda**, Toshimi Shimizu***,
and Shoko Kamiya***

*Department of Bioengineering and Robotics, Tohoku University, 6-6-01 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan

**Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

***Nanoarchitectonics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

November 22, 2006
February 13, 2007
April 20, 2007
micromanipulation, 3D, laser tweezers, lipid nanotube, microtool
We developed a novel technique for manipulating lipid nanotubes in 3D space by using laser tweezers in water solutions. Laser tweezers are well known for their use in noncontact manipulation in a closed space. We reported on 3D 6DOF manipulation of microbeads using 3D synchronized laser micromanipulation (SLM), but blur is generated in the microscope image when multiple points at different heights are trapped by scanning the focal point of the laser. It is difficult to manipulate a nanoscale rod-like object stably in 3D space, since the optical trap force is weak. To manipulate a lipid nanotube, for example, we developed an observation system to less image blur by synchronizing the shutter timing of the CCD camera and laser scanning. We thus obtained a clear image of targets at different heights while manipulating them. We then developed functional gel microtools that adhere to lipid nanotubes and succeeded in controlling the position and orientation of lipid nanotubes by using 3D SLM with shutter timing control and novel functional gel microtools.
Cite this article as:
F. Arai, T. Endo, R. Yamauchi, T. Fukuda, T. Shimizu, and S. Kamiya, “3D Manipulation of Lipid Nanotubes with Functional Gel Microbeads,” J. Robot. Mechatron., Vol.19 No.2, pp. 198-204, 2007.
Data files:
  1. [1] Y. Xia and G. M. Whitesides, “Soft Lithography,” Angew. Chem. Int. Ed. 37, pp. 550-575, 1998.
  2. [2] J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, “Components for integrated poly(dimethylsiloxane) microfluidic systems,” Electrophoresis, 23, pp. 3461-3473, 2002.
  3. [3] F. Arai, C. Ng, H. Maruyama, A. Ichikawa, H. El-Shimy, and T. Fukuda, “On Chip Single-Cell Separation and Immobilization Using Optical Tweezers and Thermo Sensitive Hydrogel,” Lab on a chip, 5-12, pp. 1399-1403, 2005.
  4. [4] A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, pp. 156-159, 1970.
  5. [5] A. Ashkin and J. M. Dziedzic, “Optical Trapping and Manipulation of Viruses and Bacteria,” Science, 235, pp. 1517-1520, 1987.
  6. [6] A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J., 61, pp. 569-582, 1992.
  7. [7] K. Sasaki, M. Koshioka, H. Misawa, H. Kitamura, and H. Masuhara, “Pattern formation and Flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett., 16, pp. 1463-1465, 1991.
  8. [8] J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Optics Communications, 207, 1-6, pp. 169-175, 2002.
  9. [9] D. G. Grier, “A revolution in optical manipulation,” Nature, 424, pp. 810-816, 2003.
  10. [10] P. J. Rodrigo, V. R. Daria, and J. Glucksted, “Real-time threedimensional optical micromanipulation of multiple particles and living cells,” Opt. Lett., 29-19, pp. 2270-2272, 2004.
  11. [11] F. Arai, K. Yoshikawa, T. Sakami, and T. Fukuda, “Synchronized laser micromanipulation of multiple targets along each trajectory by single laser,” Applied Physics Letters, 85-19, pp. 4301-4303, 2004.
  12. [12] F. Arai, T. Endo, R. Yamauchi, and T. Fukuda, “3D 6DOF Manipulation of Microbead by Laser Tweezers,” Journal of Robotics and Mechatronics, Vol.18, No.2, pp. 153-159, 2006.
  13. [13] F. Arai, T. Endo, R. Yamauchi, and T. Fukuda, “3D 6DOF Manipulation ofMicro-object Using Laser Trapped Microtool,” Proc. of the 2006 IEEE Int’l Conf. on Robotics and automation, pp. 1390-1395, 2006.
  14. [14] T. Shimizu, M. Masuda, and H. Minamikawa, “Supramolecular Nanotube Architectures Based on Amphiphilic Molecules,” Chemical Reviews, 105, 4, pp. 1401-1443, 2005.
  15. [15] S. Kamiya, H. Minamikawa, J. H. Jung, B. Yang, M. Masuda, and T. Shimizu, “Molecular Structure of Glucopyranosylamide Lipid and Nanotube Morphology,” Langmuir, 21, 2, pp. 743-750, 2005.
  16. [16] F. Arai, M. Ogawa, T. Fukuda, K. Horio, T. Sone, K. Itoigawa, and A. Maeda, “High speed random separation of microobject in microchip by laser manipulator and dielectrophoresis,” Proc. IEEE Micro Electro Mechanical Systems Conf., pp. 727-732, 2000.
  17. [17] F. Arai, H. Maruyama, T. Sakami, A. Ichikawa, and T. Fukuda, “Pinpoint Injection of Microtools for Minimally Invasive Micromanipulation of Microbe by Laser Trap,” IEEE/ASME Transactions on Mechatronics, 8-1, pp. 3-9, 2003.
  18. [18] H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength Dependence of Cell Cloning Efficiency after Optical Trapping,” Biophysical Journal, 70, pp. 1529-1533, 1996.
  19. [19] A. Ichikawa, F. Arai, K. Yoshikawa, T. Uchida, and T. Fukuda, “Insitu formation of a gel microbead for indirect laser micromanipulation of microorganisms,” Applied Physics Letters, Vol.87, No.19, pp. 191108-1-191108-3, 2005.
  20. [20] H. Maruyama, F. Arai, and T. Fukuda, “Microfabrication and Laser Manipulation of Functional Microtool using In-Situ photofabrication,” Journal of Robotics and Mechatronics, Vol.17, No.3, pp. 335-341, 2005.
  21. [21] H. Furusawa, A. Fukagawa, Y. Ikeda, J. Araki, K. Ito, G. John, and T. Shimizu, “Aligning a Single-Lipid Nanotube with Moderate Stiffness,” Angew. Chem. Int. Ed., Vol.42, No.1, pp. 72-74, 2003.
  22. [22] H. Maruyama, F. Arai, and T. Fukuda, “On-Chip pH Sensing with Gel Microbead Positioned by Optical Tweezers,” Proc. of μTAS 2006 Conference, Vol.2, pp. 1247-1249, 2006.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on May. 19, 2024