Paper:
Three-Dimensional Obstacle Avoidance of Blimp-Type Unmanned Aerial Vehicle Flying in Unknown and Non-Uniform Wind Disturbance
Hiroshi Kawano
NTT Corporation, NTT Communication Science Laboratories, 3-1 Wakamiya, Morinosato, Atsugi, Kanagawa 243-0198, Japan
- [1] T. Fukao, K. Fujitani, and T. Kanade, “An Autonomous Blimp for a Surveyllance System,” Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1820-1825, October, 2003.
- [2] J. P. Laumond, P. Jacobs, M. Taix, and R. Murray, “A motion planner for nonholonomic mobile robots,” IEEE Transactions on Robotics and Automation, Vol.10, No.5, pp. 577-593, 1994.
- [3] T. Yamasaki and N. Goto, “Identification of Blimp Dynamics by Flight Tests,” Transactions of JSASS, Vol.43, pp. 195-205, 2003.
- [4] D. R. Yoerger and J.-J. E. Slotine, “Adaptive sliding control of an experimental underwater vehicle,” Proceedings of 1991 IEEE International Conference on Robotics and Automation, pp. 2746-2751, April, 1991.
- [5] K. Kim and T. Ura, “Fuel-Optimal Guidance and Tracking Control of AUV under Current Interaction,” Proceedings of ISOPE 2003, pp. 191-196, May, 2003.
- [6] H. Kawano, “Method for Applying Reinforcement Learning to Motion Planning and Control of Under-actuated Underwater Vehicle in Unknown Non-uniform Sea flow,” Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 146-152, August, 2005.
- [7] H. Kimura and S. Kobayashi, “Efficient Non-Linear Control by Combining Q-learning with Local Linear Controllers,” Proceedings of 16th International Conference on Machine Learning, pp. 210-219, June, 1999.
- [8] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduction,” MIT Press, 1998.
- [9] B. L. Paris, “Modeling Turbulence For Flight Simulation at NASAAMES,” CSCR, No.4, January, 1975.
- [10] M. Aicardi, G. Casalino, and G. Indiveri, “New techniques for the guidance of underactuated marine vehicles,” Proceedings of the IARP Workshop, pp. 88-98, October, 2001.
- [11] M. Venditteli and J. P. Laumond, “Obstacle Distance for Car-like Robots,” IEEE Transactions on Robotics and Automation, Vol.15, No.4, pp. 678-691, 1999.
- [12] M. Yamada and M. Tomizuka, “Robust Global Exponential Stabilization of an Underactuated Airship,” Proceedings of the IFAC World Congress, Prague, Czech Republic, Mo-A02-To-5, 2005.
- [13] H. Kawano and T. Ura, “Motion Planning Algorithm for Non-Holonomic Autonomous Underwater Vehicle in Disturbance using Reinforcement Learning and Teaching Method,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 4032-4038, May, 2002.
- [14] H. Kawano and T. Ura, “Fast Reinforcement Learning Algorithm for Motion Planning of Non-Holonomic Autonomous Underwater Vehicle in Disturbance,” Proceedings of 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 903-908, October, 2002.
- [15] S. Koenig and M. Likhachev, “Improved Fast Replanning for Robot Navigation in Unknown Terrain,” Proceedings of the 2002 IEEE International Conference on Robotics and Automation, pp. 968-975, May, 2002.
- [16] E. S. Jang, S. Jung, and T. C. Hsia, “Collision Avoidance of a Mobile Robot for Moving Obstacles Based on Impedance Force Control Algorithm,” Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 277-282, August, 2005.
- [17] E. P. Lopes, E. P. L. Aude, J. T. C. Silveira, H. Serderia, and M. F. Martins, “Application of a Blind Person Strategy for Obstacle Avoidance with the use of Potential Fields,” Proceedings of 2001 IEEE International Conference on Robotics and Automation, pp. 2911-2916, May, 2001.
- [18] K. Ishii, T. Fujii, and T. Ura, “An on-line adaptation method in a neural network based control system for AUVs,” IEEE Journal of Oceanic Engineering, Vol.20, No.3, pp. 221-228, July, 1995.
- [19] R. A. Brooks, “A robust layered control system for a mobile robot,” IEEE Journal of Robotics and Automation, RA-2, pp. 14-23, 1986.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2007 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.