single-rb.php

JRM Vol.18 No.6 pp. 692-697
doi: 10.20965/jrm.2006.p0692
(2006)

Paper:

Optical 3D Manipulation and Observation in Real-Time

Jesper Glückstad, Peter John Rodrigo, and Ivan Perch-Nielsen

Risø National Laboratory, Optics and Plasma Research Department, PO Box 49, DK-4000 Roskilde, Denmark

Received:
March 31, 2006
Accepted:
July 14, 2006
Published:
December 20, 2006
Keywords:
generalized phase contrast, 3D real-time, multi-beam trapping, spatial phase, polarization modulation
Abstract
Three-dimensional light structures can be created by modulating the spatial phase and polarization properties of the laser light. A particularly promising technique is the Generalized Phase Contrast (GPC) method invented and patented at Risø National Laboratory. Based on the combination of programmable spatial light modulator devices and an advanced graphical user-interface the GPC method enables real-time, interactive and arbitrary control over the dynamics and geometry of synthesized light patterns. Recent experiments have shown that GPC-driven micro-manipulation provides a unique technology platform for fully user-guided assembly of a plurality of particles in a plane, control of particle stacking along the beam axis, manipulation of multiple hollow beads, and the organization of living cells into three-dimensional colloidal structures. These demonstrations illustrate that GPC-driven micro-manipulation can be utilized not only for the improved synthesis of functional microstructures but also for non-contact and parallel actuation crucial for sophisticated opto- and micro-fluidic based lab-on-a-chip systems.
Cite this article as:
J. Glückstad, P. Rodrigo, and I. Perch-Nielsen, “Optical 3D Manipulation and Observation in Real-Time,” J. Robot. Mechatron., Vol.18 No.6, pp. 692-697, 2006.
Data files:
References
  1. [1] D. G. Grier, “A revolution in optical manipulation,” Nature, Vol.424, pp. 810-816, 2003.
  2. [2] M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science, Vol.249, pp. 749-754, 1990.
  3. [3] A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett., Vol.88, 053601, 2002.
  4. [4] A. Terray, J. Oakley, and D. W. M. Marr, “Microfluidic control using colloidal devices,” Science, Vol.296, pp. 1841-1844, 2002.
  5. [5] J. P. Hoogenboom, D. L. J. Vossen, C. Faivre-Moskalenko, M. Dogerom, and A. van Blaaderen, “Patterning surfaces with colloidal particles using optical tweezers,” Appl. Phys. Lett., Vol.80, pp. 4828-4830, 2002.
  6. [6] M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature, Vol.426, pp. 421-424, 2003.
  7. [7] J. Glückstad, “Microfluidics – Sorting particles with light,” Nature Materials, Vol.3, pp. 9-10, 2004.
  8. [8] S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “Onedimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett., Vol.89, 283901, 2002.
  9. [9] P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Glückstad, “Interactive light-driven and parallel manipulation of inhomogeneous particles,” Opt. Express, Vol.10, pp. 1550-1556, 2002.
  10. [10] J. Leach et al., “3D manipulation of particles into crystal structures using holographic optical tweezers,” Opt. Express, Vol.12, pp. 220-226, 2004.
  11. [11] P. Jordan et al., “Permanent 3D microstructures in a polymeric host created using holographic optical tweezers,” J. Mod. Opt. Vol.51, pp. 627-632, 2004.
  12. [12] J. Glückstad, US, EP, and JP Patent portfolio.
  13. [13] J. Glückstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. Vol.40, pp. 268-282, 2001.
  14. [14] P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time interactive optical micromanipulation of a mixture of high- and low-index particles,” Opt. Express, Vol.12, pp. 1417-1425, 2004.
  15. [15] V. R. Daria, P. J. Rodrigo, and J. Glückstad, “Dynamic array of dark optical traps,” Appl. Phys. Lett., Vol.84, pp. 323-325, 2004.
  16. [16] P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time threedimensional optical micromanipulation of multiple particles and living cells,” Opt. Lett., Vol.29, pp. 2270-2272, 2004.
  17. [17] R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Elliptic polarisation encoding in two dimensions using phase-only spatial light modulators,” Opt. Commun., Vol.187, pp. 325-336, 2001.
  18. [18] P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett., Vol.86, 074103.1-074103.3, 2005.
  19. [19] N. Arneborg, H. Siegumfeldt, G. Nielsen, P. Nissen, V. R. Daria, P. J. Rodrigo, and J. Glückstad, “Interactive optical multiple-cell manipulation shows yeast growth inhibition by space-limitation,” FEMS Microbiol. Lett., Vol.245, pp. 155-159, 2005.
  20. [20] P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Dynamically reconfigurable optical lattices,” Opt. Express, Vol.13, pp. 1384-1394, 2005.
  21. [21] I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes,” Opt. Express, Vol.13, pp. 2852-2857, 2005.
  22. [22] P. J. Rodrigo, L. Gammelgaard, P. Boggild, I. Perch-Nielsen, and J. Glückstad, “Actuation of microfabricated tools using multiple GPCbased counterpropagating-beam traps,” Opt. Express, Vol.13, pp. 6899-6904, 2005.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 22, 2024