Paper:
Natural Resolution of Ill-Posed Inverse Kinematics for Redundant Robots: A Challenge to Bernstein’s Degrees-of-Freedom Problem
Suguru Arimoto*,** and Masahiro Sekimoto*
*Department of Robotics, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
**BMC Research Center, RIKEN, Nagoya, Aichi 463-0003, Japan
- [1] N. A. Bernstein (translated from the Russian by M. L. Latash), “On Dexterity and Its Development,” Lawrence Erlbaum Associates, Inc., 1996.
- [2] N. A. Bernstein, “The Coordination and Regulation of Movements,” Pergamon, London, 1967.
- [3] J. Lenarcic (ed.), “Special Issue on Redundant Robots. Laboratory Robotics and Automation,” 6-1, 1991.
- [4] Y. Nakamura, “Advanced Robotics: Redundancy and Optimization,” Addison-Wesley, Reading, MA, 1991.
- [5] O. Khatib, “A unified approach for motion and force control of robot manipulators: The operational space formulation,” IEEE J. Robotics and Automation, RA-3-1, pp. 43-53, 1987.
- [6] J. M. Hollerbach and K. C. Suh, “Redundancy resolution of manipulators through torque optimization,” IEEE J. of Robotics and Automation, RA-3-4, pp. 308-316, 1987.
- [7] T. Yoshikawa, “Manipulability of robotic mechanisms,” Intl. J. of Robotics Research, 4-2, pp. 3-9, 1985.
- [8] V. Potkonjak, S. Tzafestas, D. Kostic, G. Djoudjevic, and M. Rasic, “The handwriting problem,” IEEE Robotics & Automation Magazine, 10-1, pp. 35-46, 2003.
- [9] Y. Nakamura and H. Hanafusa, “Task priority based redundancy control of robot manipulators,” in H. Hanafusa and H. Inoue (eds.), Robotics Research: The Second Intl. Symp., MIT Press, Cambridge, MA, pp. 447-456, 1985.
- [10] J. Baillieul, “Avoiding obstacles and resolving kinematic redundancy,” Proc. of the IEEE Intl. Conf. on Robotics and Automation, San Francisco, CA, pp. 1698-1704, 1986.
- [11] D. E. Whitney, “Resolved motion rate control of manipulators and human prostheses,” IEEE Trans. on Man-Machine Systems, MMS-10-2, pp. 47-53, 1969.
- [12] A. Liegeois, “Automatic supervisory control of the configuration and behavior of multibody mechanisms,” IEEE Trans. on Systems, Man and Cybernetics, SMC-7-12, pp. 868-871, 1977.
- [13] A. G. Feldman, “Once more on the equilibrium-point hypothesis (λ model) for motor control,” J. of motor behavior, 18-1, pp. 17-54, 1986.
- [14] T. Flash, “The control of hand equilibrium trajectories in multijoint arm movements,” Biological Cybernetics, 57-4-5, pp. 257-274, 1987.
- [15] T. Flash and N. Hogan, “The coordination of arm movements: an experimentally confirmed mathematical model,” J. of Neuroscience, 5-7, pp. 1688-1703, 1985.
- [16] A. P. Georgopoulos, “On reaching,” Annual review of Neuroscience, 9, pp. 147-170, 1986.
- [17] E. Bizzi, N. Hogan, F. A. Mussa-Ivaldi, and S. Giszter, “Does the nervous system use equilibrium-point control to guide single and multiple joint movements?,” Behavioral and Brain Sciences, 15-4, pp. 603-613, 1992.
- [18] A. G. Feldman, “Functional turing of the nervous system with control of movement or maintenance of a steady posture. III. mechanographic analysis of the execution by man of the simplest motor tasks,” Biophysics, 11, pp. 766-775, 1966.
- [19] E. Bizzi, A. Polit, and P. Morasso, “Mechanisms underlying achievement of final head position,” J. of neurophysiology, 39-2, pp. 435-444, 1976.
- [20] E. Bizzi, N. Accornero, W. Chapple, and N. Hogan, “Posture control and trajectory formation during arm movement,” J. of Neuroscience, 4-11, pp. 2738-2744, 1984.
- [21] M. Takegaki and S. Arimoto, “A new feedback method for dynamic control of manipulators,” Trans. of the ASME, J. of Dynamic Systems, Measurement, and Control, 103-2, pp. 119-125, 1981.
- [22] S. Arimoto, “Control Theory of Nonlinear Mechanical Systems: A Passivity-based and Circuit-theoretic Approach,” Oxford Univ. Press, Oxford, UK, 1996.
- [23] N. Hogan, “An organizing principle for a class of voluntary movements, J. of neuroscience, 4-11, pp. 2745-2754, 1984.
- [24] W. L. Nelson, “Physical principles for economies of skilled movements,” Biological Cybernetics, 46-2, pp. 135-147, 1983.
- [25] Z. Hasan, “Optimized movement trajectories and joint stiffness in unperturbed, inertially loaded movements,” Biological cybernetics, 53-6, pp. 373-382, 1986.
- [26] Y. Uno, M. Kawato, and R. Suzuki, “Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model,” Biological Cybernetics, 61-2, pp. 89-101, 1989.
- [27] M. Kawato, Y. Maeda, Y. Uno, and R. Suzuki, “Trajectory formation of arm movement by cascade neural network model based on minimum torque-change criterion,” Biological Cybernetics, 62-4, pp. 275-288, 1990.
- [28] H. Cruse, E. Wischmeyer, M. Bruwer, P. Brockfield, and A. Dress, “On the cost functions for the control of the human arm movement,” Biological Cybernetics, 62-6, pp. 519-528, 1990.
- [29] S. Arimoto, “Intelligent control of multi-fingered hands,” Annual Review in Control, 28-1, pp. 75-85, 2004.
- [30] S. Arimoto, H. Hashiguchi, and R. Ozawa, “A simple control method coping with a kinematically ill-posed inverse problem of redundant robots: analysis in case of a handwriting robot,” Asian J. of Robotics, 7-2, pp. 112-123, 2005.
- [31] M. L. Latash, “Neurophysiological Basis of Movement,” Human Kinetics Pub., New York, 1998.
- [32] H. Seraji, “Configuration control of redundant manipulators: Theory and implementation,” IEEE Trans. on Robotics and Automation, 5-4, pp. 472-490, 1989.
- [33] J. M. Winters and L. Stark, “Muscle models: what is gained and what is lost by varying model complexity,” Biological Cybernetics, 55-6, pp. 403-420, 1987.
- [34] N. Hogan, “The mechanics of multi-joint posture and movement control,” Biological Cybernetics, 52-5, pp. 315-331, 1985.
- [35] S. Arimoto and M. Sekimoto, “Human-like movements of robotic arms with redundant DOFs virtual spring-damper hypothesis to tackle the Bernstein problem,” Proc. of the 2006 IEEE Intl. Conf. on Robotics and Automation, Orlando, FL, pp. 1860-1866, 2006.
- [36] P. L. Gribble, L. I. Mullin, N. Cothros, and A. Mattar, “Role of cocontraction in arm movement accuracy,” J. of Neurophysiology, 89-5, pp. 2396-2405, 2003.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2006 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.