Paper:
Estimation of Bounded Model Uncertainties
Olivier Adrot*, Jean-Marie Flaus*, and José Ragot**
*Laboratoire d’Automatique de Grenoble - UMR 5528, ENSIEG, BP 46, 38402 St Martin d’Hères Cedex, France
**Centre de Recherche en Automatique de Nancy - UMR 7039, ENSEM, 2, avenue de la Forêt de Haye, 54516 Vandœuvre-lès-Nancy Cedex, France
- [1] O. Adrot, “Diagnostic à base de modèles incertains utilisant l’analyse par intervalles: l’approche bornante,” Ph.D. of the “Institut National Polytechnique de Lorraine,” France, 2000.
- [2] O. Adrot, D. Maquin, and J. Ragot, “Bounding approach to the fault detection of uncertain dynamic systems,” IFAC Safeprocess2000, 2000.
- [3] O. Adrot, D. Maquin, and J. Ragot, “Diagnosis of an uncertain static system,” IEEE CDC’2000, 2000.
- [4] O. Adrot, J. Ragot, and J.-M. Flaus, “Characterization of bounded uncertainties,” Complex Systems, Intelligence and Modern Technology Applications CSIMTA, Cherbourg, 2004.
- [5] V. Cerone, “Parameter bounds for ARMAX models from records with bounded errors in variables,” International Journal of Control, Vol.57, No.1, pp. 225-235, 1993.
- [6] T. Clément and S. Gentil, “Recursive membership set estimation for ARMAX models: an output-error approach,” 12th IMACS World Congress, 1988.
- [7] E. Fogel and Y. F. Huang, “On the value of information in system identification-bounded noise case,” Automatica, Vol.18, No.2, pp. 229-238, 1982.
- [8] L. Jaulin and E. Walter, “Guaranteed nonlinear parameter estimation from bounded-error data via interval analysis,” Mathematics and Computers in Simulation, No.35, pp. 123-137, 1993.
- [9] M. Milanese and G. Belforte, “Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: linear families of models,” IEEE Transactions on Automatic Control, Vol.AC-27, No.2, pp. 408-413, 1982.
- [10] M. Milanese, J. Norton, H. Piet-Lahanier, and E. Walter, “Bounding approaches to system identification,” Plenum Press, New York & London, 1996.
- [11] S. H. Mo and J. P. Norton, “Fast and robust algorithm to compute exact polytope parameter bounds,” Math. and Comput. in Simul., Vol.32, pp. 481-493, 1990.
- [12] R. E. Moore, “Methods and applications of interval analysis,” SIAM, Philadelphia, Pennsylvania, 1979.
- [13] A. Neumaier, “Interval methods for systems of equations,” Cambridge University Press, Cambridge, 1990.
- [14] H. Piet-Lahanier and E. Walter, “Exact recursive characterization of feasible parameter sets in the linear case,” Math. and Comput. in Simul., Vol.32, pp. 495-504, 1990.
- [15] S. Ploix, O. Adrot, and J. Ragot, “Parameter Uncertainty Computation in static Linear Models,” IEEE CDC’99, 1999.
- [16] S. Ploix, O. Adrot, and J. Ragot, “Bounding approach to the diagnosis of uncertain static systems,” IFAC Safeprocess2000, 2000.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2006 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.