Paper:
On-Chip Microparticle Manipulation Using Disposable Magnetically Driven Microdevices
Hisataka Maruyama*, Fumihito Arai**, and Toshio Fukuda*
*Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
**Department of Bioengineering and Robotics, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- [1] Y. Kimura, and R. Yanagimachi, “Intracytoplasmic sperm injection in the mouse,” Biology of Reproduction, Vol.52, No.4, pp. 709-720, 1995.
- [2] K. K. Tan, and S. C. Ng, “Computer-controlled piezo micromanipulation system for biomedical applications,” Engineering Science and Education Journal, pp. 249-256, 2001.
- [3] T. Nakayama, H. Fujiwara, K. Tatsumi, K. Fujita, T. Higuchi, and A. Sato, “A new assisted hatching technique using a piezomicromanipulator,” Fertility and Sterility, Vol.69, No.4, 1998.
- [4] M. R. Melamed, T. Lindmo, and M. L. Mendelsohn, “Flow Cytometry and Sorting,” Wiley-Liss, New York, USA, 2nd edn., 1991.
- [5] T. Katsuragi, and Y. Tani, “Single-Cell Sorting of Microorganisms by Flow or Slide-Based (Including Laser Scanning) Cytometry,” Acta Biotechnol., Vol.21, pp. 99-115, 2001.
- [6] S. Gawad, L. Schild, and Ph. Renaud, “Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing,” Lab on a chip, Vol.1, p. 76, 2001.
- [7] M. Rieseberg, C. Kasper, K. F. Reardon, and T. Scheper, “Flow Cytometry in Biotechnology,” Appl. Microbiol. Biotechnol., Vol.56, pp. 350-360, 2001.
- [8] H. E. Ayliffe, A. B. Frazier, and R. D. Rabbit, “Electric impedance spectroscopy using microchannels with integrated metal electrodes,” IEEE J. Microelectromech. Syst., Vol.8, No.1, p. 50, 1999.
- [9] S. Fiedler, S. G. Shirley, T. Schnelle, and G. Fuhr, “Dielectrophoretic Sorting of Particles and Cells in a Microsystem,” Anal. Chem., Vol.70, No.9, p. 1909, 1998.
- [10] C. K. Fuller, J. Hamilton, H. Ackler, and P. R. C. Gascoyne, “Microfabricated multi-frequency particle impedance characterization system,” Micro Total Analysis Systems, Kluwer, Enschede, Netherland, 2000.
- [11] G. B. Lee, C. I. Hung, B. J. Ke, G. R. Huang, B. H. Hwei, and H.-F. Lai, “Hydrodynamic Focusing for a Micromachined Flow Cytometer,” ASME J. Fluids Eng., Vol.123, pp. 672-679, 2001.
- [12] G.-B. Lee, L.-M. Fu, R.-J. Yang, and Y.-Y. Pan, “Micro Flow Cytometers Using Electrokinetic Forces with Integrated Optical Fibers for On-Line Cell/Particle Counting and Sorting,” 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, Squaw Valley, California, USA, pp. 45-48, 2003.
- [13] J. Gao, X.-F. Yin, and Z.-L. Fang, “Integrating Single Cell Injection, Cell Lysis and Separation of Intracellular Constituents on a Microfluidic Chip,” 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, Squaw Valley, California, USA, pp. 231-234, 2003.
- [14] E. B. Cummings, G. J. Fiechtner, A. K. Singh, B. A. Simmons, Y. Fintscenko, and B. Lapizco-Encinas, “Integrating Single Cell Injection, Cell Lysis and Separation of Intracellular Constitutions on a Microfluidic Chip,” 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, Squaw Valley, California, USA, pp. 231-234, 2003.
- [15] T. Deng, G. M. Whitesides, M. Radhakrishnan, G. Zabow, and M. Prentiss, “Manipulation of magnetic microbeads in suspension using micromagnetic systems fabricated with soft lithography,” Applied Physics Letters, Vol.78, Issue 12, pp. 1775-1777, 2001.
- [16] H. Lee, A. M. Purdon, and R. M. Westervelt, “Manipulation of biological cells using a microelectromagnet matrix,” Applied Physics Letters, Vol.85, Issue 6, pp. 1603-1605, 2004.
- [17] N. A. Cridland, N. R. Sabour, and R. D. Saunders, “Effects of 50Hz magnetic field exposure on the rate of RNA synthesis by normal human fibroblasts,” International Journal of Radiation Biology, Vol.75, No.5, pp. 647-654, 1999.
- [18] M. Kuhara, H. Takeyama, T. Tanaka, and T. Matsunaga, “Magnetic Cell Separation Using Antibody Binding with Protein A Expressed on Bacterial Magnetic Particles,” Analytical Chemistry, Vol.76, No.21, pp. 6207-6213, 2004.
- [19] M. Gauthier, and E. Piat, “An electromagnetic micromanipulation system for single-cell manipulation,” Journal of Micromechatronics, Vol.2, No.2, p. 87, 2004.
- [20] E. Delamarche, A. Bernard, H. Schmid, B. Michel, and H. Biebucyck, “Patterned delivery of immunoglobulins to surface using microfluidic networks,” Science, Vol.276, p. 779, 1997.
- [21] C. S. Effenhauser, G. J. M. Brun, A. Paulus, and M. Ehrat, “Integrated capillary electrophoresis on flexible silicone microdevices: Analysis of DNA restriction fragments and detection of single DNA molecules on microchip,” Anal. Chem., 69, 3451, 1997.
- [22] J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, “Components for integrated poly (dimethylsiloxane) microfluidic systems,” Electrophoresis, Vol.23, p. 3461, 2002.
- [23] K. Hosokawa, and R. Maeda, “A pneumatically-actuated three-way microvalve fabricated with poludimethylsiloxane using the membrane transfer technique,” J. Micromech. Meicroeng., Vol.10, p. 415, 2000.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2006 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.