JRM Vol.17 No.4 pp. 401-409
doi: 10.20965/jrm.2005.p0401


Realtime FPGA-Based Vision System

Shinichi Hirai*, Masakazu Zakoji**, Akihiro Masubuchi***,
and Tatsuhiko Tsuboi****

*Department of Robotics, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

**Seiko Epson Corp.

***Sony Corp.

****Toray Engineering Co., Ltd.

November 30, 2004
March 25, 2005
August 20, 2005
vision, realtime, FPGA, logic circuit, parallel processing
This article describes a realtime FPGA-based vision system and its experimental evaluation. We detail the developed system, implementing three vision algorithms on it – image gravity center computation, object orientation detection using radial projection, and Hough transform computation. We then execute these algorithms on the FPGA-based vision system.
Cite this article as:
S. Hirai, M. Zakoji, A. Masubuchi, and T. Tsuboi, “Realtime FPGA-Based Vision System,” J. Robot. Mechatron., Vol.17 No.4, pp. 401-409, 2005.
Data files:
  1. [1] C. D. Thompson, “Fourier Transforms in VLSI,” IEEE Trans. on Computers, Vol.C-32, No.11, pp. 1047-1057, 1983.
  2. [2] M. Maresca, M. Lavin, and H. Li, “Parallel Hough Transform Algorithms on Polymorphic Torus Architecture,” S. Levialdi eds., “Multicomputer Vision,” Academic Press, pp. 9-21, 1988.
  3. [3] H. Inoue, T. Tachikawa, and M. Inaba, “Robot Vision System with a Correlation Chip for Real-time Tracking, Optical Flow and Depth Map Generation,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1621-1626, Nice, May 1992.
  4. [4] A. Bugeja, and W. Yang, “A Reconfigurable VLSI Coprocessing System for the Block Matching Algorithm,” IEEE Trans on VLSI Systems, Vol.5, No.3, pp. 329-337, 1995.
  5. [5] M. Hariyama, T. Takeuchi, and M. Kameyama, “VLSI Processor for Reliable Stereo Matching Based on AdaptiveWindow-Size Selection,” Proc. 2001 IEEE Int. Conf. on Robotics and Automation, pp. 1168-1173, Seoul, May 2001.
  6. [6] J.-E. Eklund, C. Svensson, and A. Aström, “VSLI Implementation of a Focal Plane Image Processor – A Realization of the Near-Sensor Image Processing Concept,” IEEE Trans. on VLSI Systems, No.4, Vol.3, pp, 322-335, 1996.
  7. [7] I. Ishii, Y. Nakabo, and M. Ishikawa, “Target Tracking Algorithm for 1ms Visual Feedback System using Massively Parallel Processing Vision,” Proc. 1996 IEEE Int. Conf. on Robotics and Automation, pp. 2309-2314, Minneapolis, May 1996.
  8. [8] R. Woods, D. Trainor, and J.-P. Heron, “Applying an XC6200 to Real-Time Image Processing,” IEEE Design & Test of Computers, Vol.15, No.1, pp. 30-38, 1998.
  9. [9] S. O. Memik, A. K. Katsaggelos, and M. Sarrafzadeh, “Analysis and FPGA Implementation of Image Restortion under Resource Constraints,” IEEE Trans. on Computers, Vol.52, No.3, pp. 390-399, 2003.
  10. [10] D. D. S. Deng, and H. ElGindy, “High-speed Parameterisable Hough Transform Using Reconfigurable Hardware,” Proc. Pan-Sydney area Workshop on Visual Information Processing, pp. 51-57, 2001.
  11. [11] G. L. Turin, “An Introduction to Digital Matched Filters,” Proceedings of the IEEE, Vol.64, No.7, pp. 1093-1112, 1977.
  12. [12] Q. Chen, M. Defries, and F. Deconinck, “Symmetric Phase-Only Matched Filtering of Fourier-Mellin Transforms for Image Registration and Recognition,” IEEE Trans. PAMI, Vol.16, No.12, pp. 1156-1168, 1994.
  13. [13] H. Onishi, and H. Suzuki, “Detection of Rotation and Parallel Translation Using Hough and Fourier Transforms,” Proc. 1996 Int. Conf. on Image Processing, Vol.3, pp. 827-830, 1996.
  14. [14] D. H. Ballard, “Generalizing the Hough Transform to Detect Arbitrary Shapes,” Pattern Recognition, Vol.13, No.2, pp. 111-122, 1981.
  15. [15] T. Tsuboi, A. Masubuchi, S. Hirai, S. Yamamoto, K. Ohnishi, and S. Arimoto, “Video-frame Rate Detection of Position and Orientation of Planar Motion Objects using One-sided RadonTransform,” Proc. IEEE Int. Conf. on Robotics and Automation, Vol.2, pp. 1233-1238, Seoul, May 2001.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 22, 2024