single-rb.php

JRM Vol.17 No.3 pp. 327-334
doi: 10.20965/jrm.2005.p0327
(2005)

Paper:

An In Vitro Patient-Specific Biological Model of the Cerebral Artery Reproduced with a Membranous Configuration for Simulating Endovascular Intervention

Seiichi Ikeda*, Fumihito Arai*, Toshio Fukuda*,
Makoto Negoro**, and Keiko Irie**

*Dept. of Micro-Nano Systems Engineering, Nagoya University, Nagoya 464-8603, Japan

**Dept. of Neurosurgery School of Medicine, Fujita Health University, Toyoake 470-1192, Japan

Received:
October 21, 2004
Accepted:
June 6, 2005
Published:
June 20, 2005
Keywords:
medical system, endovascular intervention, vascular model, rapid prototype, medical imaging
Abstract
We propose an in vitro patient-specific anatomical model of the human cerebral artery and its simulation of endovascular intervention, a potent treatment modality for cerebrovascular diseases. Our proposed model reproduces the 3-dimensional vasculature lumen, using computed tomography (CT) and magnetic resonance (MR) fluoroscopic information, within a thin artery-like membranous configuration having material properties close to arterial tissue. This cerebral arterial model reproduces an exceedingly realistic surgical feel, dynamic vascular deformation and, other important aspects involving endovascular intervention, realizing a highly realistic surgical simulation. We also propose another vasculature model that reproduces the subarachnoid space around the cerebral arteries. This version simulates endovascular intervention realistically. The model is compatible with current major imaging modalities such as CT, MR, and transcranial Doppler (TDC), and should provide effective platforms for applications, such as diagnosis, surgical planning, medical training, hemodynamic analysis and medical system development and evaluation, especially surgical robots.
Cite this article as:
S. Ikeda, F. Arai, T. Fukuda, M. Negoro, and K. Irie, “An In Vitro Patient-Specific Biological Model of the Cerebral Artery Reproduced with a Membranous Configuration for Simulating Endovascular Intervention,” J. Robot. Mechatron., Vol.17 No.3, pp. 327-334, 2005.
Data files:
References
  1. [1] A. Molyneux, R. Kerr, I. Stratton, P. Sandercock et al., International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group, “International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial,” Lancet, Vol.360, pp. 1267-1274, 2002.
  2. [2] P. Ng, M. S. Khangure, C. C. Phatouros, M. Bynevelt et al., “Endovascular Treatment of Intracranial Aneurysms With Guglielmi Detachable Coils: Analysis of Midterm Angiographic and Clinical Outcomes,” Stroke, Vol.33, pp. 210-217, 2002.
  3. [3] S. C. Johnston, D. R. Gress, and J. G. Kahn, “Which unruptured cerebral aneurysms should be treated?: A cost-utility analysis,” Neurology, Vol.52, pp. 1806-1815, 1999.
  4. [4] J. E. Jordan, M. P. Marks, B. Lane, and G. K. Steinberg, “Costeffectiveness of endovascular therapy in the surgical management of cerebral arteriovenous malformations,” Am. J. Neuroradiol, Vol.17, pp. 247-254, 1996.
  5. [5] P. Bairstow, A. Dodgson, J. Linto, and M. Khangure, “Comparison of cost and outcome of endovascular and neurosurgical procedures in the treatment of ruptured intracranial aneurysms,” Australasian Radiology, Vol.46, pp. 249-251, 2002.
  6. [6] M. Tanimoto, F. Arai, T. Fukuda, H. Iwata et al., “Micro force sensor for intravascular neurosurgery,” Proc. 1997 IEEE ICRA, pp. 1561-1566.
  7. [7] M. Tanimoto, F. Arai, T. Fukuda, and M. Negoro “Augmentation of safety in tele-operation system for intravascular neurosurgery,” Proc. 1998 IEEE ICRA, pp. 2890-2895.
  8. [8] S. Ikeda, F. Arai, T. Fukuda, M. Negoro, and I. Takahashi, “Rapid production of an in vitro anatomical model of human cerebral arteries based on CT images,” Proc. 2002 IEEE Micromechatronics and Human Science, pp. 41-47.
  9. [9] C. W. Kerber, C. B. Heilman, and P. H. Zanetti, “Transparent elastic arterial model I: a brief technical note,” Biorheology, Vol.26, pp. 1041-1049, 1998.
  10. [10] C. W. Kerber, and C. B. Heilman, “Flowdynamics in the carotid artery: 1. Preliminary observations using a transparent elastic model,” Am. J. Neuroradiol, Vol.13, pp. 173-180, 1992.
  11. [11] P. Gailloud, J. R. Pray, M. Muster, M, Piotin et al. “An in vitro anatomic model of the human cerebral arteries with saccular arterial aneurysms,” Surg. Radiol. Anat., Vol.19, pp. 119-121, 1997.
  12. [12] P. Gailloud, J. R. Pray, M. Muster, M. Piotin et al., “In vitro models of intracranial arteriovenous fistulas for evaluation of new endovascular treatment materials,” Am. J. Neuroradiol, Vol.20, pp. 291-295, 1999.
  13. [13] K. Sugiu, J. B. Martin, B. Jean, P. Gailloud et al., “Artificial Cerebral Aneurysm Model for Medical Testing, Training, and Research,” Neurol. Med. Chir., Vol.43, pp. 69-73, 2003.
  14. [14] B. W. Chong, C. W. Kerber, R. B. Buxton, and L. R. Frank, “Blood flow dynamics in the vertebrobasilar system: Correlation of a transparent elastic model and MR angiography,” Am. J. Neuroradiol, Vol.15, pp. 733-745, 1994.
  15. [15] S. Tateshima, Y. Murayama, J. P. Villablanca et al., “In vitro measurement of fluid-induced wall shear stress in unruptured cerebral aneuryms harboring blebs,” Stroke, Vol.34, pp. 193-199, 2003.
  16. [16] A. M. Norbash, and R. J. Singera, “Videographic Assessment of the embolic characteristics of three polymeric compounds: Ethylene vinyl alcohol, cellulose acetate, and liquid urethane,” Am. J. Neuroradiol, Vol.22, pp. 334-340, 2001.
  17. [17] M. P. Marks, H. Chee, R. P. Liddell, G. K. Steinberg et al., “A mechanically detachable coil for the treatment of aneurysms and occlusion of blood vessels,” Am. J. Neuroradiol, Vol.15, pp. 821-827, 1994.
  18. [18] T. A. Altes, H. J. Cloft, J. G. Short, A. DeGast et al., “Creation of saccular aneurysms in the rabbit: A model suitable for tesintg endovasucular devices,” Am. J. Roentgenology, Vol.174, pp. 349-354, 2000.
  19. [19] R. A. Caldwell, J. E. Woodell, S. P. Ho, S. W. Shalaby et al., “In vitro evaluation of phosphonylated low-density polyethylene for vascular appliations,” J. Biomed. Mater. Res., Vol.62, pp. 514-524, 2002.
  20. [20] H. Hasegawa, H. Kanai, N. Hoshimiya, N. Chubachi et al., “Accuracy evaluation in the measurement of a small change in the thickness of arterial walls and the measurement of elasticity of the human carotid artery,” Jpn. J. Phys., Vol.37, pp. 3101-3105, 1998.
  21. [21] R. A. Caldwell, J. E. Woodell, S. P. Ho, S. W Shalaby et al., “In vitro evaluation of phosphonylated low-density polyethylene for vascular applications,” J. Biomed. Mater. Res., Vol.62, pp. 514-524, 2002.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 22, 2024