single-rb.php

JRM Vol.17 No.3 pp. 335-341
doi: 10.20965/jrm.2005.p0335
(2005)

Paper:

Microfabrication and Laser Manipulation of Functional Microtool Using In-Situ Photofabrication

Hisataka Maruyama, Fumihito Arai, and Toshio Fukuda

Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

Received:
October 17, 2004
Accepted:
March 3, 2005
Published:
June 20, 2005
Keywords:
microtool, laser tweezers, microfabrication, photo-crosslinkable resin, manipulation
Abstract
Single cell experiments have become very important for investigating unknown cell properties. We developed a novel technique to study individual cell properties on a chip using newly developed cell manipulation by laser tweezers with the photo-crosslinkable resin, using this resin to developed functional colored, fluorescent, cell binding, rotation free, and rope shaped microtools on a chip. Colored and fluorescent microtools are for cell manipulation using inexpensive image processing. Cell binding microtools are for high-speed transport of target cells. Rotation free microtools are for attitude control and precise force measurement of cells and DNA. Rope shaped microtools are for versatile manipulation. Laser tweezers is used to position-control microtools. We used a mercury lamp for UV illumination at the local area for combining microtools and fabricated our functional microtools and manipulated cells on the microchip.
Cite this article as:
H. Maruyama, F. Arai, and T. Fukuda, “Microfabrication and Laser Manipulation of Functional Microtool Using In-Situ Photofabrication,” J. Robot. Mechatron., Vol.17 No.3, pp. 335-341, 2005.
Data files:
References
  1. [1] N. Szita, A. Zanzotto, P. Boccazzi, A. J. Sinskey, M. A. Schmidt, and K. F. Jensen, “Monitoring of cell groth, oxygen and pH in microfermentors,” Proc. of Micro Total Analysis System, Nara, Japan, pp. 7-9, 2002.
  2. [2] I. Inoue, Y. Wakamoto, H. Moriguchi, K. Okano, and K. Yasuda, “On-chip culture system for observation of isolated individual cells,” Lab-on-a-Chip, Vol.1, pp. 50-55, 2001.
  3. [3] S. Uehara, Y. Wakamoto, I. Inoue, and K. Yasuda, “On-chip single-cell microcultivation assay for monitoring environmental effects on isolated cells,” Biochemical and Biophysical Research Communications, Vol.305, pp. 534-540, 2003.
  4. [4] T. Katsuragi, and Y. Tani, “Review: Single-cell sorting of microorganisms by flow or slide-based (including laser scanning) cytometry,” Acta Biotechnol, Vol.21, pp. 99-115, 2001.
  5. [5] S. Gawad, L. Schild, and Ph. Renaud, “Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing,” Lab on a chip, Vol.1, pp. 76-82, 2001.
  6. [6] M. R. Melamed, T. Lindmo, and M. L. Mendelsohn, “Fow Cytometry and Sorting, 2nd ed.,” New York, Wily-Liss, 1991.
  7. [7] G. Fuhr, R. Hagedorn, T. Mueller, B. Wagner, and W. Benecke, “Linear motion of dielectric particles and living cells in microfabricated structures induced by traveling electric fields,” Proc. of IEEE Micro Electro Mechanical Systems, pp. 259-262, 1991.
  8. [8] A. Ashkin, and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science, Vol.235, pp. 1517-1520, 1987.
  9. [9] H. A. Pohl, “Dielectrophoresis,” 1, Cambridge University Press, Cambridge, 1978.
  10. [10] F. Arai, A. Ichikawa, M. Ogawa, T. Fukuda, K. Horio, and K. Itoigawa, “High-Speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis,” Electrophoresis, Vol.22, pp. 283-288, 2001.
  11. [11] F. Arai, A. Ichikawa, T. Fukuda, and T. Katsuragi, “Isolation and extraction of target microbes using thermal sol-gel transformation,” Analyst, Vol.128, pp. 547-551, 2003.
  12. [12] C. N. Keir, H. C. Edmund, F. L. Grace, B. Keren, and M. B. Steven, “Characterization of Photdamage to Escherichia coli in Optical Traps,” Biophysical Journal, Vol.77, pp. 2856-2863, 1999.
  13. [13] H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophysical Journal, Vol.70, pp. 1529-1533, 1996.
  14. [14] F. Arai, H. Maruyama, T. Sakami, A. Ichikawa, and T. Fukuda, “Pinpoint injection of microtools for minimally invasive micromanipulation of microbe by laser trap,” IEEE/ASME Transactions on Mechatronics, Vol.8, pp. 3-9, 2003.
  15. [15] C. Mio, and D. W. M. Marr, “Optical Trapping for the Manipulation of Colloidal Particles,” Adv. Materials, Vol.12, pp. 917-920, 2000.
  16. [16] F. Arai, K. Yoshikawa, T. Sakami, and T. Fukuda, “Synchronized Manipulation and Force Measurement by Optical Tweezers Using High-speed Laser Scanning,” Proc. of the 2004 IEEE ICRA, New Orleans, LA, April 2004, pp. 890-895.
  17. [17] F. Arai, T. Sakami, K. Yosikawa, H. Maruyama, and T. Fukuda, “Synchronized Manipulation and Force Measurement by Optical Tweezers Using High-speed Laser Scanning,” Proc. of the 2003 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, pp. 2121-2126, 2003.
  18. [18] F. Arai, H. Maruyama, T. Fukuda, and T. Katsuragi, “Fixation of Microorganisms for Investigation of Their Properties on a Chip,” Proc. of Micro Total Analysis System, California, USA, pp. 21-24, 2003.
  19. [19] K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern Formation and Flow Control of fine Particles by Laser Scanning Micromanipulation,” Optics Letters, Vol.16, pp. 1463-1465, 1991.
  20. [20] E. Delamarche, A. Bernard, H. Schmid, B. Michel, and H. Biebuyck, “Patterned delivery of immunoglobulins to surfaces using microfluidic networks,” Science, Vol.276, pp. 779-781, 1997.
  21. [21] C. S. Effenhauser, G. J. M. Bruin, A. Paulus, and M. Ehrat, “Integrated capillary electrophoresis on flexible silicone microdevices: Analysis of DNA restriction fragments and detection of single DNA molecules on microchips,” Anal. Chem., Vol.69, pp. 3451-3457, 1997.
  22. [22] D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem., Vol.70, pp. 4974-4984, 1998.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 18, 2024