JRM Vol.17 No.3 pp. 318-326
doi: 10.20965/jrm.2005.p0318


A Dynamic Body Model of the Nematode C. elegans with Neural Oscillators

Michiyo Suzuki*, Takeshi Goto*, Toshio Tsuji*,
and Hisao Ohtake**

*Department of Artificial Complex Systems Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan

**Department of Biotechnology, Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan

October 17, 2004
May 10, 2005
June 20, 2005
C. elegans, neural circuit model, dynamic body model, neural oscillator, computer simulation
The nematode Caenorhabditis elegans (C. elegans), a relatively simple organism in structure, is one of the most well-studied multicellular organisms. We developed a virtual C. elegans based on the actual organism to analyze motor control. We propose a dynamic body model, including muscles, controlled by a neural circuit model based on the actual nematode. The model uses neural oscillators to generate rhythmic movement. Computer simulation confirmed that the virtual C. elegans realizes motor control similar qualitatively to that of the actual organism. Specified classes of neurons are killed in the neural circuit model corresponding to actual unc mutants, demonstrating that resulting movement of the virtual C. elegans resembles that of actual mutants.
Cite this article as:
M. Suzuki, T. Goto, T. Tsuji, and H. Ohtake, “A Dynamic Body Model of the Nematode C. elegans with Neural Oscillators,” J. Robot. Mechatron., Vol.17 No.3, pp. 318-326, 2005.
Data files:
  1. [1] H. Ohtake, “Software of Organisms,” KYORITSU SUPPAN, 1998 (in Japanese).
  2. [2] H. Ohtake, T. Yako, T. Tsuji, J. Kato, A. Kuroda, and M. Kaneko, “An Approach to Molecular Artificial Life: Bacterial Intelligent Behavior and Its Computer Model,” Artificial Life V (C.G. Langton, K. Shimohara, eds.), The MIT Press, Cambridge, pp. 395-401, 1997.
  3. [3] T. Tsuji, K. Hashigami, M. Kaneko, and H. Ohtake, “Emerging Chemotaxis of Virtual Bacteria Using Genetic Algorithm,” T. IEE Japan, Vol.122-C, No.2, pp. 201-207, 2002 (in Japanese).
  4. [4] A. Hirano, T. Tsuji, N. Takiguchi, and H. Ohtake, “Modeling of the Membrane Potential Change of Paramecium for Mechanical Stimuli,” Trans. of SICE, Vol.42, No.4, pp. 351-357, 2005 (in Japanese).
  5. [5] A. Cangelosi, and D. Parisi, “A Neural Network Model of Caenorhabditis elegans: The Circuit of Touch Sensitivity,” Neural Processing Letters, Vol.6, pp. 91-98, 1997.
  6. [6] T. C. Ferrée, and S. R. Lockery, “Computational Rules for Chemotaxis in the Nematode C. elegans,” Journal of Comp. Neurosci., Vol.6, pp. 263-277, 1999.
  7. [7] Cybernetic Caenorhabditis Elegans Program (CCEP) ed., “Study on the Nervous System of C. elegans as a Biological Information System,” Annual Report of CCEP, Keio Future, Keio University, Yokohama, 2001 (in Japanese).
  8. [8] J. Bryden, and N. Cohen, “A Simulation Model of the Locomotion Controllers for the Nematode C. elegans,” From animals to animats 8 (Proc. of the eighth International Conference on the Simulation of Adaptive Behavior), pp. 183-192, 2004.
  9. [9] M. Suzuki, T. Tsuji, and H. Ohtake, “A Model of Motor Control of the Nematode C. elegans with Neuronal Circuits,” Artificial Intelligence in Medicine, 2005 (in press).
  10. [10] M. Suzuki, T. Goto, T. Tsuji, and H. Ohtake, “A Motor Control Model of the Nematode C. elegans,” Proc. of IEEE International Conference on Robotics and Biomimetics 2004, p. 299, 2004.
  11. [11] S. R. Lockery, and T. J. Sejnowski, “The Computational Leech,” Trends in Neuroscience, Vol.16, No.7, pp. 283-290, 1993.
  12. [12] Ö. Ekeberg, “A Combined Neuronal and Mechanical Model of Fish Swimming,” Biol. Cybern., Vol.69, pp. 363-374, 1993.
  13. [13] Ö. Ekeberg, A. Lansner, and S. Grillner, “The Neural Control of Fish Swimming Studied Through Numerical Simulations,” Adaptive Behavior, Vol.3, No.4, pp. 363-384, 1995.
  14. [14] A. J. Ijspeert, “A Connectionist Central Pattern Generator for the Aquatic and Terrestrial Gaits of a Simulated Salamander,” Biol. Cybern., Vol.84, pp. 331-348, 2001.
  15. [15] A. K. Kozlow, F. Ullen, P. Fagerstedt, E. Aurell, A. Lansner, and S. Grillner, “Mechanisms for Lateral Turns in Lamprey in Response to Descending Unilateral Commands: a Modelimg Study,” Biol. Cybern., Vol.86, pp. 1-14, 2002.
  16. [16] J. E. Sulston, E. Schierenberg, J. G. White, and J. N. Thomson, “The Embryonic Cell Lineage of the Nematode Caenorhabditis elegans,” Developmental Biology, Vol.100, pp. 64-119, 1983.
  17. [17] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner, “The Structure of the Nervous System of Nematode Caenorhabditis elegans,” Phil. Trans. Royal Soc. London, series B, Boil. Scien. Vol.314, Issue 1165, pp. 1-340, 1986.
  18. [18] The C. elegans Sequencing Consortium, “Genome Sequence of the Nematode C. elegans: A Platform for Investigating Biology,” Science, Vol.282, pp. 2012-2018, 1998.
  19. [19] N. A. Croll, “Components and Patterns in the Behaviour of the Nematode Caenorhabditis elegans,” Journal of Zoology, London, Vol.176, pp. 159-176, 1975.
  20. [20] D. L. Riddle, T. Blumenthal, B. J. Meyer, and J. R. Priess, “C. elegans II,” Cold Spring Harbor Laboratory Press, 1998.
  21. [21] K. Matsuoka, “Mechanisms of Frequency and Pattern Control in the Neural Rhythm Generators,” Biol. Cybern., Vol.56, pp. 345-353, 1987.
  22. [22] N. Hogan, “Adaptive Control of Mechanical Impedance by Coactivation of Antagonist Muscles,” IEEE Trans. Automatic Control, Vol.AC-29, No.8, pp. 681-690, 1984.
  23. [23] Y. Umetani, and S. Hirose, “Biomechanical Study of Serpentine Locomotion,” Proc. 1st RoManSy Symp., Springer-Verlag, pp. 171-184, 1974.
  24. [24] V. Potkonjak, and M. Vukobratovic, “Two New Methods for Computer Forming of Dynamic Equation of Active Mechanisms,” Mech Mach Theory, Vol.14, pp. 189-200, 1979.
  25. [25] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Numerical Recipes in C: The Art of Scientific Computing,” Cambridge University Press, 1993.
  26. [26] Scion Corporation,

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 19, 2024