single-dr.php

JDR Vol.14 No.5 pp. 786-797
(2019)
doi: 10.20965/jdr.2019.p0786

Paper:

Experimental High-Resolution Forecasting of Volcanic Ash Hazard at Sakurajima, Japan

Alexandros Panagiotis Poulidis*,†, Tetsuya Takemi*, and Masato Iguchi**

*Disaster Prevention Research Institute (DPRI), Kyoto University
Gokasho, Uji, Kyoto 611-0011, Japan

Corresponding author

**Sakurajima Volcano Research Center, Disaster Prevention Research Institute (DPRI), Kyoto University, Kagoshima, Japan

Received:
November 22, 2018
Accepted:
May 10, 2019
Published:
August 1, 2019
Keywords:
volcanic ash, tephra, dispersal modeling, ash hazard forecast, FALL3D
Abstract

A high-resolution forecast methodology for the ash hazard at Sakurajima volcano, Japan, is presented. The methodology employs a combined modeling approach and utilizes eruption source parameters estimated by geophysical observations from Sakurajima, allowing for a proactive approach in forecasting. The Weather Research and Forecasting (WRF) model is used to downscale Japan Meteorological Agency (JMA) forecast data over the area of interest. The high-resolution meteorological data are then used in FALL3D model to provide a forecast for the ash dispersal and deposition. The methodology is applied for an eruption that occurred on June 16, 2018. Disdrometer observations of ashfall are used along with ash dispersal modeling to inform the choice of the total grain size distribution (TGSD). A series of pseudo-forecast ash dispersal simulations are then carried out using the proposed methodology and estimated TGSD, initialized with meteorological forecast data released up to ∼13 hours before the eruption, with results showing surprising consistency up to ∼10 hours before the eruption. Using forecast data up to 4 hours before the eruption was seen to constrain observation to model ratios within a factor of 2–4 depending on the timing of simulation and location. A number of key future improvements for the methodology are also highlighted.

Cite this article as:
A. Poulidis, T. Takemi, and M. Iguchi, “Experimental High-Resolution Forecasting of Volcanic Ash Hazard at Sakurajima, Japan,” J. Disaster Res., Vol.14 No.5, pp. 786-797, 2019.
Data files:
References
  1. [1] C. Bonadonna, A. Folch, S. Loughlin, and H. Puempel, “Future developments in modelling and monitoring of volcanic ash clouds: Outcomes from the first IAVCEI-WMO workshop on Ash Dispersal Forecast and Civil Aviation,” Bulletin of Volcanology, Vol.74, Issue 1, pp. 1-10, 2012.
  2. [2] B. Langmann, A. Folch, M. Hensch, and V. Matthias, “Volcanic ash over Europe during the eruption of Eyjafjallajökull on Iceland, April–May 2010,” Atmospheric Environment, Vol.48, pp. 1-8, 2012.
  3. [3] A. P. Poulidis, T. Takemi, A. Shimizu, M. Iguchi, and S. F. Jenkins, “Statistical analysis of dispersal and deposition patterns of volcanic emissions from Mt. Sakurajima, Japan,” Atmospheric Environment, Vol.179, pp. 305-320, 2018.
  4. [4] A. Hansell and C. Oppenheimer, “Health Hazards from Volcanic Gases: A Systematic Literature Review,” Archives Environmental Health: An Int. J., Vol.59, Issue 12, pp. 628-639, 2004.
  5. [5] S. E. Hillman, C. J. Horwell, A. L. Densmore, D. E. Damby, B. Fubini, Y. Ishimine, and M. Tomatis, “Sakurajima volcano: A physico-chemical study of the health consequences of long-term exposure to volcanic ash,” Bulletin of Volcanology, Vol.74, Issue 4, pp. 913-930, 2012.
  6. [6] S. F. Jenkins, T. M. Wilson, C. Magill, V. Miller, C. Stewart, R. Blong, W. Marzocchi, M. Boulton, C. Bonadonna, and A. Costa, “Volcanic ash fall hazard and risk,” S. C. Loughlin, S. Sparks, S. K. Brown, S. F. Jenkins, and C. Vye-Brown (Eds.), “Global Volcanic Hazards and Risk,” pp. 173-222, Cambridge University Press, 2015.
  7. [7] T. M. Wilson, C. Stewart, V. Sword-Daniels, G. S. Leonard, D. M. Johnston, J. W. Cole, J. Wardman, G. Wilson, and S. T. Barnard, “Volcanic ash impacts on critical infrastructure,” Physics Chemistry of the Earth, Parts A/B/C, Vols.45-46, pp. 5-23, 2012.
  8. [8] J. L. Hayes, T. M. Wilson, and C. Magill, “Tephra fall clean-up in urban environments,” J. of Volcanology and Geothermal Research, Vol.304, pp. 359-377, 2015.
  9. [9] A. Folch, “A review of tephra transport and dispersal models: Evolution, current status, and future perspectives,” J. of Volcanology and Geothermal Research, Vols.235-236, pp. 96-115, 2012.
  10. [10] R. S. J. Sparks, “Forecasting volcanic eruptions,” Earth and Planetary Science Letters, Vol.210, Issues 1-2, pp. 1-15, 2003.
  11. [11] W. Degruyter and C. Bonadonna, “Improving on mass flow rate estimates of volcanic eruptions,” Geophysical Research Letters, Vol.39, Issue 16, Article No. L16308, 2012.
  12. [12] L. G. Mastin, M. Guffanti, R. Servranckx, P. Webley, S. Barsotti, K. Dean, A. Durant, J. W. Ewert, A. Neri, W. I. Rose, D. Schneider, L. Siebert, B. Stunder, G. Swanson, A. Tupper, A. Volentik, and C. F. Waythomas, “A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions,” J. of Volcanology and Geothermal Research, Vol.186, Issues 1-2, pp. 10-21, 2009.
  13. [13] Y. Hasegawa, A. Sugai, Y. Hayashi, Y. Hayashi, S. Saito, and T. Shimbori, “Improvements of volcanic ash fall forecasts issued by the Japan Meteorological Agency,” J. of Applied Volcanology, Vol.4, Article No.2, 2015.
  14. [14] M. Iguchi, “Volcanic Activity of Sakurajima Monitored Using Global Navigation Satellite System,” J. Disaster Res., Vol.13, No.3, pp. 518-525, 2018.
  15. [15] M. Maki, M. Iguchi, T. Maesaka, T. Miwa, T. Tanada, T. Kozono, T. Momotani, A. Yamaji, and I. Kakimoto, “Preliminary Results of Weather Radar Observations of Sakurajima Volcanic Smoke,” J. Disaster Res., Vol.11, No.1, pp. 15-30, 2016.
  16. [16] S. Oishi, M. Iida, M. Muranishi, M. Ogawa, R. I. Hapsari, and M. Iguchi, “Mechanism of Volcanic Tephra Falling Detected by X-Band Multi-Parameter Radar,” J. Disaster Res., Vol.11, No.1, pp. 43-52, 2016.
  17. [17] A. Todde, R. Cioni, M. Pistolesi, N. Geshi, and C. Bonadonna, “The 1914 Taisho eruption of Sakurajima volcano: stratigraphy and dynamics of the largest explosive event in Japan during the twentieth century,” Bulletin of Volcanology, Vol.79, Article No.72, 2017.
  18. [18] M. Iguchi, H. Yakiwara, T. Tameguri, M. Hendrasto, and J. Hirabayashi, “Mechanism of explosive eruption revealed by geophysical observations at the Sakurajima, Suwanosejima and Semeru volcanoes,” J. of Volcanology and Geothermal Research, Vol.178, Issue 1, pp. 1-9, 2008.
  19. [19] M. M. Morrissey and L. G. Mastin, “Vulcanian eruptions,” H. Sigurdsson et al. (Eds.), “Encyclopedia of Volcanoes,” 1st Edition, pp. 463-476, Academic Press, 1999.
  20. [20] M. Iguchi, T. Tameguri, Y. Ohta, S. Ueki, and S. Nakao, “Characteristics of Volcanic Activity at Sakurajima Volcano’s Showa Crater During the Period 2006 to 2011,” Bulletin of Volcanological Society of Japan, Vol.58, No.1, pp. 115-135, 2013.
  21. [21] M. Iguchi, “Method for Real-Time Evaluation of Discharge Rate of Volcanic Ash – Case Study on Intermittent Eruptions at the Sakurajima Volcano, Japan –,” J. Disaster Res., Vol.11, No.1, pp. 4-14, 2016.
  22. [22] V. Freret-Lorgeril, F. Donnadieu, J. Eychenne, C. Soriaux, and T. Latchimy, “In situ terminal settling velocity measurements at Stromboli volcano: Input from physical characterization of ash,” J. of Volcanology and Geothermal Research, Vol.374, pp. 62-79, 2019.
  23. [23] S. Biass, A. Todde, R. Cioni, M. Pistolesi, N. Geshi, and C. Bonadonna, “Potential impacts of tephra fallout from a large-scale explosive eruption at Sakurajima volcano, Japan,” Bulletin of Volcanology, Vol.79, Article No.73, 2017.
  24. [24] C. Bonadonna, M. Pistolesi, R. Cioni, W. Degruyter, M. Elissondo, and V. Baumann, “Dynamics of wind-affected volcanic plumes: The example of the 2011 Cordón Caulle eruption, Chile,” J. of Geophysical Research: Solid Earth, Vol.120, Issue 4, pp. 2242-2261, 2015.
  25. [25] M. Bursik, “Effect of wind on the rise height of volcanic plumes,” Geophysical Research Letters, Vol.28, Issue 18, pp. 3621-3624, 2001.
  26. [26] M. Oishi, K. Nishiki, N. Geshi, R. Furukawa, Y. Ishizuka, T. Oikawa, T. Yamamoto, F. Nanayama, A. Tanaka, A. Hirota, T. Miwa, and Y. Miyabuchi, “Distribution and mass of tephra-fall deposits from volcanic eruptions of Sakurajima Volcano based on posteruption surveys,” Bulletin of Volcanology, Vol.80, Article No.42, 2018.
  27. [27] A. P. Poulidis, T. Takemi, M. Iguchi, and I. A. Renfrew, “Orographic effects on the transport and deposition of volcanic ash: A case study of Mount Sakurajima, Japan,” J. of Geophysical Research: Atmospheres, Vol.122, Issue 17, pp. 9332-9350, 2017.
  28. [28] Japan Meteorological Agency, “Report on Sakurajima Volcanic Activity, June 2018,” https://www.data.jma.go.jp/svd/vois/data/tokyo/ STOCK/monthly_v-act_doc/fukuoka/18m06/506_18m06.pdf [accessed November 20, 2018]
  29. [29] A. P. Poulidis and T. Takemi, “A 1998–2013 climatology of Kyushu, Japan: seasonal variations of stability and rainfall,” Int. J. of Climatology, Vol.37, Issue 4, pp. 1843-1858, 2017.
  30. [30] A. P. Poulidis, J. C. Phillips, I. A. Renfrew, J. Barclay, A. Hogg, S. F. Jenkins, R. Robertson, and D. M. Pyle, “Meteorological Controls on Local and Regional Volcanic Ash Dispersal,” Scientific Reports, Vol.8, Article No.6873, 2018.
  31. [31] Japan Meteorological Agency, “Sakurajima Ashfall Forecast (16/06/2018 – 07:46),” http://www.data.jma.go.jp/svd/vois/data/ kouhai/jishin_data/data/contents/kazan/vol/ashfallq/20180615/Z__ C_RJTD_20180615224609_EQV_CHT_JCIashfallq_JR506X_N1_ image.pdf [accessed November 20, 2018]
  32. [32] W. C. Skamarock and J. B. Klemp, “A time-split nonhydrostatic atmospheric model for weather research and forecasting applications,” J. of Computational Physics, Vol.227, Issue 7, pp. 3465-3485, 2008.
  33. [33] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, “A Description of the Advanced Research WRF Version 3,” NCAR Technical Notes, NCAR/TN-475+STR, 2008.
  34. [34] Japan Meteorological Agency, “JMA Numerical Weather Prediction,” https://www.jma.go.jp/jma/jma-eng/jma-center/nwp/nwp- top.htm [accessed November 20, 2018]
  35. [35] J. B. Klemp, J. Dudhia, and A. D. Hassiotis, “An Upper Gravity-Wave Absorbing Layer for NWP Applications,” Monthly Weather Review, Vol.136, No.10, pp. 3987-4004, 2008.
  36. [36] J. C. Knievel, G. H. Bryan, and J. P. Hacker, “Explicit Numerical Diffusion in the WRF Model,” Monthly Weather Review, Vol.135, No.11, pp. 3808-3824, 2007.
  37. [37] S.-Y. Hong, Y. Noh, and J. Dudhia, “A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes,” Monthly Weather Review, Vol.134, No.9, pp. 2318-2341, 2006.
  38. [38] H. Morrison, G. Thompson, and V. Tatarskii, “Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes,” Monthly Weather Review, Vol.137, No.3, pp. 991-1007, 2009.
  39. [39] M. J. Iacono, J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, “Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models,” J. of Geophysical Research: Atmospheres, Vol.113, Issue D13, Article No.D13103, 2008.
  40. [40] A. C. M. Beljaars, “The parametrization of surface fluxes in large-scale models under free convection,” Quarterly J. of Royal Meteorological Society, Vol.121, Issue 522, pp. 255-270, 1995.
  41. [41] A. J. Dyer and B. B. Hicks, “Flux-gradient relationships in the constant flux layer,” Quarterly J. of Royal Meteorological Society, Vol.96, Issue 410, pp. 715-721, 1970.
  42. [42] C. A. Paulson, “The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer,” J. of Applied Meteorology, Vol.9, No.6, pp. 857-861, 1970.
  43. [43] E. K. Webb, “Profile relationships: The log-linear range, and extension to strong stability,” Quarterly J. of Royal Meteorological Society, Vol.96, Issue 407, pp. 67-90, 1970.
  44. [44] D. Zhang and R. A. Anthes, “A High-Resolution Model of the Planetary Boundary Layer – Sensitivity Tests and Comparisons with Sesame-79 Data,” J. of Applied Meteorology, Vol.21, No.11, pp. 1594-1609, 1982.
  45. [45] J. Dudhia, “A multi-layer soil temperature model for MM5,” Proc. of 6th PSU/NCAR Mesoscale Model Users’ Workshop, pp. 49-50, 1996.
  46. [46] A. Folch, A. Costa, and G. Macedonio, “FPLUME-1.0: An integral volcanic plume model accounting for ash aggregation,” Geoscientific Model Development, Vol.9, pp. 431-450, 2016.
  47. [47] A. Costa, A. Folch, and G. Macedonio, “A model for wet aggregation of ash particles in volcanic plumes and clouds: 1. Theoretical formulation,” J. of Geophysical Research: Solid Earth, Vol.115, Issue B9, Article No.B09201, 2010.
  48. [48] A. Folch, A. Costa, A. Durant, and G. Macedonio, “A model for wet aggregation of ash particles in volcanic plumes and clouds: 2. Model application,” J. of Geophysical Research: Solid Earth, Vol.115, Issue B9, Article No.B09202, 2010.
  49. [49] G. H. Ganser, “A rational approach to drag prediction of spherical and nonspherical particles,” Powder Technology, Vol.77, Issue 2, pp. 143-152, 1993.
  50. [50] E. Kaminski, S. Tait, and G. Carazzo, “Turbulent entrainment in jets with arbitrary buoyancy,” J. of Fluid Mechanics, Vol.526, pp. 361-376, 2005.
  51. [51] P. M. Tate, “The rise and dilution of buoyant jets and their behaviour in an internal wave field,” Ph.D. Thesis, University of New South Wales, 2002.
  52. [52] T. Takemi and R. Rotunno, “The Effects of Subgrid Model Mixing and Numerical Filtering in Simulations of Mesoscale Cloud Systems,” Monthly Weather Review, Vol.131, No.9, pp. 2085-2101, 2003.
  53. [53] J. C. Wyngaard, “Toward Numerical Modeling in the “Terra Incognita”,” J. of the Atmospheric Sciences, Vol.61, pp. 1816-1826, 2004.
  54. [54] I. A. Boutle, A. Finnenkoetter, A. P. Lock, and H. Wells, “The London Model: forecasting fog at 333 m resolution,” Quorterly J. of the Meteological Society, Vol.142, Issue 694, pp. 360-371, 2016.
  55. [55] A. Costa, G. Macedonio, and A. Folch, “A three-dimensional Eulerian model for transport and deposition of volcanic ashes,” Earth and Planetary Science Letters, Vol.241, Issues 3-4, pp. 634-647, 2006.
  56. [56] A. Folch, A. Costa, and G. Macedonio, “FALL3D: A computational model for transport and deposition of volcanic ash,” Computers & Geosciences, Vol.35, Issue 6, pp. 1334-1342, 2009.
  57. [57] G. Macedonio, A. Costa, and A. Folch, “Uncertainties in volcanic plume modeling: A parametric study using FPLUME,” J. of Volcanology Geothermal Research, Vol.326, pp. 92-102, 2016.
  58. [58] B. R. Morton, G. I. Taylor, and J. S. Turner, “Turbulent gravitational convection from maintained and instantaneous source,” Proc. of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol.234, Issue 1196, pp. 1-23, 1956.
  59. [59] G. Carazzo, E. Kaminski, and S. Tait, “On the rise of turbulent plumes: Quantitative effects of variable entrainment for submarine hydrothermal vents, terrestrial and extra terrestrial explosive volcanism,” J. of Geophysical Research: Solid Earth, Vol.113, Issue B9, Article No.B09201, 2008.
  60. [60] P. M. Tate and J. H. Middleton, “Unification of Non-Dimensional Solutions to Asymptotic Equations for Plumes of Different Shape,” Boundary-Layer Meteorology, Vol.94, Issue 2, pp. 225-251, 2000.
  61. [61] G. G. J. Ernst, R. S. J. Sparks, S. N. Carey, and M. I. Bursik, “Sedimentation from turbulent jets and plumes,” J. of Geophysical Research: Solid Earth, Vol.101, Issue B3, pp. 5575-5589, 1996.
  62. [62] A. W. Woods, “Moist convection and the injection of volcanic ash into the atmosphere,” J. of Geophysical Research: Solid Earth, Vol.98,Issue B10, pp. 17627-17636, 1993.
  63. [63] R. J. Brown, C. Bonadonna, and A. J. Durant, “A review of volcanic ash aggregation,” Physics and Chemistry of the Earth, Parts A/B/C. Vols.45-46, pp. 65-78, 2012.
  64. [64] J. S. Gilbert and S. J. Lane, “The origin of accretionary lapilli,” Bulletin of Volcanology, Vol.56, Issue 5, pp. 398-411, 1994.
  65. [65] G. Bagheri, E. Rossi, S. Biass, and C. Bonadonna, “Timing and nature of volcanic particle clusters based on field and numerical investigations,” J. of Volcanology and Geothermal Research, Vol.327, pp. 520-530, 2016.
  66. [66] M. Smoluchowski, “Versuch einer mathematischen Theorie der Koagulationskinetic kolloider Lösungen,” Zeitschrift für Physikalische Chemie, Vol.92U, pp. 129-168, 1918.
  67. [67] S. Corradini, L. Merucci, and A. Folch, “Volcanic Ash Cloud Properties: Comparison Between MODIS Satellite Retrievals and FALL3D Transport Model,” IEEE Geoscience and Remote Sensing Letters, Vol.8, Issue 2, pp. 248-252, 2011.
  68. [68] A. Folch, O. Jorba, and J. Viramonte, “Volcanic ash forecast – application to the May 2008 Chaitén eruption,” Natural Hazards and Earth System Sciences, Vol.8, Issue 4, pp. 927-940, 2008.
  69. [69] M. S. Osores, A. Folch, E. Collini, G. Villarosa, A. Durant, G. Pujol, and J. G. Viramonte, “Validation of the FALL3D model for the 2008 Chaitén eruption using field and satellite data,” Andean Geology, Vol.40, No.2, pp. 262-276, 2013.
  70. [70] M. Poret, A. Costa, A. Folch, and A. Martí, “Modelling tephra dispersal and ash aggregation: The 26th April 1979 eruption, La Soufrière St. Vincent,” J. of Volcanology Geothermal Research, Vol.347, pp. 207-220, 2017.
  71. [71] G. C. Mulena, D. G. Allende, S. E. Puliafito, S. G. Lakkis, P. G. Cremades, and A. G. Ulke, “Examining the influence of meteorological simulations forced by different initial and boundary conditions in volcanic ash dispersion modelling,” Atmospheric Research, Vols.176-177, pp. 29-42, 2016.
  72. [72] A. Martí and A. Folch, “Volcanic ash modeling with the NMMB-MONARCH-ASH model: quantification of offline modeling errors,” Atmospheric Chemistry and Physics, Vol.18, Issue 6, pp. 4019-4038, 2018.
  73. [73] C. Bonadonna and B. F. Houghton, “Total grain-size distribution and volume of tephra-fall deposits,” Bulletin of Volcanology, Vol.67, Issue 5, pp. 441-456, 2005.
  74. [74] F. Girault, G. Carazzo, S. Tait, F. Ferrucci, and E. Kaminski, “The effect of total grain-size distribution on the dynamics of turbulent volcanic plumes,” Earth and Planetary Science Letters, Vol.394, pp. 124-134, 2014.
  75. [75] E. Rossi, C. Bonadonna, and W. Degruyter, “A new strategy for the estimation of plume height from clast dispersal in various atmospheric and eruptive conditions,” Earth and Planetary Science Letters, Vol.505, pp. 1-12, 2019.
  76. [76] C. Bonadonna, G. G. J. Ernst, and R. S. J. Sparks, “Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number,” J. of Volcanology and Geothermal Research, Vol.81, Issues 3-4, pp. 173-187, 1998.
  77. [77] R. B. Smith, “Linear theory of stratified hydrostatic flow past an isolated mountain,” Tellus, Vol.32, Issue 4, pp. 348-364, 1980.
  78. [78] S. F. L. Watt, J. S. Gilbert, A. Folch, J. C. Phillips, and X. M. Cai, “An example of enhanced tephra deposition driven by topographically induced atmospheric turbulence,” Bulletin of Volcanology, Vol.77, Article No.35, 2015.
  79. [79] J. Eychenne, A. C. Rust, K. V. Cashman, and W. Wobrock, “Distal Enhanced Sedimentation from Volcanic Plumes: Insights from the Secondary Mass Maxima in the 1992 Mount Spurr Fallout Deposits,” J. of Geophysical Research, Vol.122, Issue 10, pp. 7679-7697, 2017.
  80. [80] I. Manzella, C. Bonadonna, J. C. Phillips, and H. Monnard, “The role of gravitational instabilities in deposition of volcanic ash,” Geology, Vol.43, No.3, pp. 211-214, 2015.
  81. [81] A. P. Poulidis, I. A. Renfrew, and A. J. Matthews, “Thermally Induced Convective Circulation and Precipitation over an Isolated Volcano,” J. of the Atmospheric Sciences, Vol.73, No.4, pp. 1667-1686, 2016.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Sep. 19, 2024