single-dr.php

JDR Vol.14 No.1 pp. 6-17
(2019)
doi: 10.20965/jdr.2019.p0006

Note:

A Newly Installed Seismic and Geodetic Observational System at Five Indonesian Volcanoes as Part of the SATREPS Project

Haruhisa Nakamichi*,†, Masato Iguchi*, Hetty Triastuty**, Hery Kuswandarto**, Iyan Mulyana**, Umar Rosadi**, Hendra Gunawan**, Gude Suantika**, Nurnaning Aisyah***, Agus Budi-Santoso***, and I Gusti Made Agung Nandaka***

*Sakurajima Volcano Research Center, Disaster Prevention Research Institute, Kyoto University
1722-19 Sakurajima-Yokoyama, Kagoshima 891-1419, Japan

Corresponding author

**Center for Volcanology and Geological Hazard Mitigation, Geological Agency, Bandung, Indonesia

***Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi, Geological Agency, Yogyakarta, Indonesia

Received:
August 8, 2018
Accepted:
January 4, 2019
Published:
February 1, 2019
Keywords:
seismic observation, global navigation satellite system, digital seismogram, wireless local area network, volcano observatory
Abstract

“Integrated Study on Mitigation of Multimodal Disasters Caused by Ejection of Volcanic Products” Project was launched in March 2014 for the Galunggung, Guntur, Kelud, Merapi, and Semeru volcanoes. The objectives of the project include the development of an observational system for the prediction and real-time estimations of the discharge rate of volcanic products. Under the project, a team from the Sakurajima Volcano Research Center, Center for Volcanology and Geological Hazard Mitigation (CVGHM) and the Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG) initiated the installation of a digital seismic and global navigation satellite system (GNSS) observational network for the volcanoes in December 2014, and finished the installation in September 2015. The seismic and GNSS data are transmitted by wireless local area networks (WLANs) from the stations to an observatory at each target volcano. We introduced three Windows PC software for data analysis: the first for estimating the equivalent rate of ejected ash from a volcano, the second for continuous smoothing of tilt data and detecting inflation and deflation in the volcanic sources, and the third for continuously evaluating eruption urgency to predict the eruption time. The seismic and GNSS data were routinely transmitted to the Support Systems of Decision Making (SSDM) at CVGHM or BPPTKG. Data completeness varied from volcano to volcano; for example, the data acquired for Kelud volcano were relatively stable, while those for Merapi volcano were problematic, owing to a communication disruption in the WLAN. We obtained the seismic and GNSS data at the target volcanoes in the observation period since 2015 when they have been relatively quiet.

Cite this article as:
H. Nakamichi, M. Iguchi, H. Triastuty, H. Kuswandarto, I. Mulyana, U. Rosadi, H. Gunawan, G. Suantika, N. Aisyah, A. Budi-Santoso, and I. Nandaka, “A Newly Installed Seismic and Geodetic Observational System at Five Indonesian Volcanoes as Part of the SATREPS Project,” J. Disaster Res., Vol.14, No.1, pp. 6-17, 2019.
Data files:
References
  1. [1] R. S. J. Sparks, J. Biggs, and J. W. Neuberg, “Monitoring volcanoes,” Science, Vol.335, pp. 1310-1311, doi:10.1126/science.1219485, 2012.
  2. [2] D. Dzurisin, “Volcano deformation: New geodetic monitoring techniques,” Springer Science and Business Media, doi:10.1007/978-3-540-49302-0.
  3. [3] S. R. McNutt and T. Nishimura, “Volcanic tremor during eruptions: Temporal characteristics, scaling and constraints on conduit size and processes,” J. Volcanol. Geotherm. Res., Vol.178, pp. 10-18, doi:10.1016/j.jvolgeores.2008.03.010, 2008.
  4. [4] M. Iguchi, “Method for real-time evaluation of discharge rate of volcanic ash – Case study on intermittent eruptions at the Sakurajima volcano, Japan-,” J. Disaster Res., Vol.11, No.1, pp. 4-14, 2016.
  5. [5] S. Hreinsdóttir, F. Sigmundsson, M. J. Roberts, H. Björnsson, R. Grapenthin, P. Arason, T. Árnadóttir, J. Hólmjárn, H. Geirsson, R. A. Bennett, M. T. Gudmundsson, B. Oddsson, B. G. Ófeigsson, T. Villemin, T. Jónsson, E. Sturkell, Á. Höskuldsson, G. Larsen, T. Thordarson, and B. A. Óladóttir, “Volcanic plume height correlated with magma pressure change at Grímsvötn Volcano, Iceland,” Nat. Geosci., Vol.7, pp. 214-218, doi:10.1038/NGEO2044, 2014.
  6. [6] T. Kozono, H. Ueda, T. Shimbori, and K. Fukui, “Correlation between magma chamber deflation and eruption cloud height during the 2011 Shinmoe-dake eruptions,” Earth, Planets and Space, Vol.66, p. 139, doi:10.1186/s40623-014-0139-1, 2014.
  7. [7] A. Budi-Santoso, P. Lesage, S. Dwiyono, S. Sumarti, Subandriyo, Surono, P. Jousset, and J.-P. Metaxian, “Analysis of the seismic activity associated with the 2010 eruption of Merapi Volcano, Java,” Vol.261, pp. 153-170, doi:10.1016/j.jvolgeores.2013.03.024, 2013.
  8. [8] H. Nakamichi, M. Iguchi, H. Triastuty, M. Hendrasto, and I. Mulyana, “Differences of precursory seismic energy release for the 2007 effusive dome-forming and 2017 Plinian eruptions at Kelud volcano, Indonesia,” J. Volcanol. Geotherm. Res., doi:10.1016/j.jvolgeores.2017.08.004.
  9. [9] H. Kumagai, H. Yepes, M. Vaca, V. Caceres, T. Nagai, K. Yokoe, T. Imai, K. Miyakawa, T. Yamashina, S. Arrais, F. Vasconez, E. Pinajota, C. Cisneros, C. Ramos, M. Paredes, L. Gomezjurado, A. Garcia-Aristizabal, I. Molina, P. Ramon, M. Segovia, P. Palacios, L. Troncoso, A. Alvarado, J. Aguilar, J. Pozo, W. Enriquez, P. Mothes, M. Hall, I. Inoue, M. Nakano, and H. Inoue, “Enhancing volcano-monitoring capabilities in Ecuador,” Vol.88, No.23, pp. 245-252, doi:10.1029/2007EO230001, 2007.
  10. [10] M. Iguchi, Surono, T. Nishimura, M. Hendrasto, U. Rosadi, T. Ohkura, H. Triastuty, A. Basuki, A. Loeqman, S. Maryanto, K. Ishihara, M. Yoshimoto, S. Nakada, and N. Hokanishi, “Methods for eruption prediction and hazard evaluation at Indonesian volcanoes,” J. Disaster Res., Vol.7, No.1, pp. 26-36, 2012.
  11. [11] Surono, P. Jousset, J. Pallister, M. Boichu, M. F. Buongiorno, A. Budi-Santoso, F. Costa, S. Andreastuti, F. Prata, D. Schneider, L. Clarisse, H. Humaida, S. Sumarti, C. Bignami, J. Griswold, S. Carn, C. Oppenheimer, and F. Lavigne, “The 2010 explosive eruption of Java’s Merapi volcano–A ‘100-year’ event,” J. Volcanol. Geotherm., Res., Vol.241-242, pp. 121-135, doi:10.1016/j.jvolgeores.2012.06.018, 2012.
  12. [12] M. Hendrasto, Surono, A. Budianto, Kristianto, H.Triastuty, N. Haerani, A. Basuki, Y. Suparman, S. Primulyana, O. Prambada, A. Loeqman, N. Indrastuti, A.S. Andreas, U. Rosadi, S. Adi, M. Iguchi, T. Ohkura, S. Nakada, and M. Yoshimoto, “Evaluation of volcanic activity at Sinabung volcano, after more than 400 years of quiet,” J. Disaster Res., Vol.7, No.1, pp. 37-47, 2012.
  13. [13] H. Gunawan, Surono, A. Budianto, Kristianto, O. Prambada, W. McCausland, J. Pallister, and M. Iguchi, “Overview of the eruptions of Sinabung eruption, 2010 and 2013–present and details of the 2013 phreatomagmatic phase,” J. Volcanol. Geotherm. Res., doi:10.1016/j.jvolgeores.2017.08.005.
  14. [14] F. Maeno, S. Nakada, M. Yoshimoto, T. Shimano, N. Hokanishi, A. Zaennudin, and M. Iguchi, “A sequence of a plinian eruption preceded by dome destruction at Kelud volcano, Indonesia, on February 13, 2014, revealed from tephra fallout and pyroclastic density current deposits,” J. Volcanol. Geotherm. Res., doi:10.1016/j.jvolgeores.2017.03.002.
  15. [15] P. J. McChesney, “McVCO Handbook 1999,” U. S. Geol. Surv. Open File, p. 51, 1999.
  16. [16] http://wwweic.eri.u-tokyo.ac.jp/WIN/Eindex.html [accessed August 4, 2018]
  17. [17] M. Shimomura, M. Iguchi, Sulistiyani, A. Budi-Santoso, I. G. M. Agung Nandaka, and K. Miyamoto, “Quasi-real time pyroclastic flow hazard mapping system at Mt. Merapi,” EGU General Assembly, Geophysical Research Abstracts, Vol.19, EGU2017-9878, 2017.
  18. [18] T. Nishimura, M. Iguchi, R. Kawaguchi, Surono, M. Hendrasto, and U. Rosadi, “Inflations prior to Vulcanian eruptions and gas bursts detected by tilt observations at Semeru Volcano, Indonesia,” Bull. Bolcanol., Vol.74, pp. 903-911, doi:10.1007/s00445-012-0579-z, 2012.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Jun. 27, 2019