single-dr.php

JDR Vol.14 No.1 p. 5
(2019)
doi: 10.20965/jdr.2019.p0005

Editorial:

Special Issue on Integrated Study on Mitigation of Multimodal Disasters Caused by Ejection of Volcanic Products: Part 2

Masato Iguchi, Setsuya Nakada, and Kuniaki Miyamoto

Sakurajima Volcano Research Center, Disaster Prevention Research Institute, Kyoto University
1722-19 Sakurajima-Yokoyama, Kagoshima 891-1419, Japan

National Research Institute for Earth Science and Disaster Resilience (NIED)
3-1 Tennoudai, Tsukuba 305-0006, Japan

Sakurajima Volcano Research Center, Disaster Prevention Research Institute, Kyoto University
1722-19 Sakurajima-Yokoyama, Kagoshima 891-1419, Japan

Published:
February 1, 2019

Our research project titled “Integrated study on mitigation of multimodal disasters caused by ejection of volcanic products” began in 2014 under SATREPS (Science and Technology Research Partnership for Sustainable Development) and is now coming to an end in 2019. Indonesia has 127 active volcanoes distributed along its archipelago making it a high risk location for volcano-related disasters. The target volcanoes in our study are Guntur, Galunggung, Merapi, Kelud, and Semeru in Java, and Sinabung in North Sumatra. Guntur and Galunggung are currently dormant and are potentially high-risk volcanoes. Merapi generated pyroclastic flows along the Gendol River in 2010, which resulted in over 300 casualties and induced frequent lahars. New eruptive activity of Merapi began in 2018. The 2014 eruption of Kelud formed a gigantic ash plume over 17 km high, dispersing ash widely over the island of Java. Semeru continued minor eruptive activity, accompanying a risk of a dome collapse. The aim of our research includes disaster mitigation of the Sinabung volcano, whose eruption began to form a lava dome at its summit at the end of 2013, followed by frequent pyroclastic flows for approximately 4 years, and the deposits became the source of rain-triggered lahars. Our goal is to implement SSDM (Support System for Decision-Making), which would allow us to forecast volcano-related hazards based on scales and types of eruptions inferred from monitoring data. This special issue collects fundamental scientific knowledge and technology for the SSDM as output from our project. The SSDM is an integrated system of monitoring, constructed scenarios, forecasting scale of eruption, simulation of sediment movement and volcanic ash dispersion in the atmosphere. X-band radars newly installed by our project in Indonesia were well utilized for estimation of spatial distribution not only of rain fall in catchments but also of volcanic ash clouds. Finally, we hope the SSDM will continue to be utilized under a consortium in Merapi, which was newly established in collaboration with our projects, and extended to other volcanoes.

Cite this article as:
M. Iguchi, S. Nakada, and K. Miyamoto, “Special Issue on Integrated Study on Mitigation of Multimodal Disasters Caused by Ejection of Volcanic Products: Part 2,” J. Disaster Res., Vol.14 No.1, p. 5, 2019.
Data files:

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Dec. 02, 2024