single-dr.php

JDR Vol.11 No.6 pp. 1082-1090
(2016)
doi: 10.20965/jdr.2016.p1082

Paper:

Meteorological Drought and Flood Assessment Using the Comparative SPI Approach in Asia Under Climate Change

Akira Hasegawa, Maksym Gusyev, and Yoichi Iwami

International Centre for Water Hazard and Risk Management (ICHARM), Public Works Research Institute (PWRI)
1-6 Minamihara, Tsukuba, Ibaraki 305-8516, Japan

Corresponding author,

Received:
June 16, 2016
Accepted:
October 2, 2016
Published:
December 1, 2016
Keywords:
comparative SPI (cSPI), precipitation, meteorological drought, climate change, Asia
Abstract

The standardized precipitation index (SPI) has been used to monitor and analyze meteorological droughts using long-term monthly precipitation from national meteorological and hydrological services on multiple timescales. Instead of evaluating climatic impacts with separately-computed SPI for present and future climates, we introduced the comparative SPI (cSPI) computed using target (future) datasets on the basis of a reference (present) dataset. The cSPI approach evaluates standardized precipitation change in one dataset for different periods and for different datasets in a common period. Using 12-month cSPI, we investigate the change in central conditions and in the probabilities of dry and wet conditions between present and future climates. Meteorological drought and flood hazards in Asia are examined with MRI-AGCM3.2S, a 20-km mesh global atmospheric model, time-slice experiments of the present (1979–2003) and future (2075–2099) with four different sea surface temperature patterns. As one result indicates, the median of the 12-month cSPI shifts to severely dry around the Mediterranean Sea to the Persian Gulf, and to extremely wet in the Tibetan Plateau, North and South India, and around the Yellow Sea. Therefore, we conclude that the cSPI approach is a useful way to characterize both future drought and flood hazards under climate change.

Cite this article as:
A. Hasegawa, M. Gusyev, and Y. Iwami, “Meteorological Drought and Flood Assessment Using the Comparative SPI Approach in Asia Under Climate Change,” J. Disaster Res., Vol.11, No.6, pp. 1082-1090, 2016.
Data files:
References
  1. [1] IPCC, “Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,” In V. R. Barros, C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, and L. L. White (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability, 688pp., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014.
  2. [2] IPCC, “The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,” In T. F. Stocker, D. Qin, G. -K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (Eds.), 1535pp., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
  3. [3] IPCC, “Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change,” In C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G. -K. Plattner, S. K. Allen, M. Tignor, and P. M. Midgley (Eds.), 582pp., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2012.
  4. [4] T. B. McKee, N. J. Doesken, and J. Kleist, “The relationship of drought frequency and duration to timescales,” In Proceedings presented at 8th Conference on Applied Climatology, pp. 179–184, Anaheim, CL, 1993, Am. Met. Soc.
  5. [5] D. C. Edwards and T. B. McKee, “Characteristics of 20th century drought in the united states at multiple time scales,” Atmospheric Science Paper No. 634, Climatology Report No. 97-2, Department of Atmospheric Science, Colorado State University, 1997.
  6. [6] A. Loukas, L. Vasiliades, and J. Tzabiras, “Evaluation of climate chnage on drought impulses in Thessaly, Greece,” European Water, Vol.17/18, pp. 17–28, 2007.
  7. [7] E. J. Burke and S. J. Brown, “Evaluating uncertainties in the projection of future drought,” J. Hydrometeor., Vol.9, pp. 292–299, 2008, doi:10.1175/2007JHM929.1.
  8. [8] M. Dubrovsky, M. D. Svoboda, M. Trnka, M. J. Hayes, D. A. Wilhite, Z. Zalud, and P. Hlavinka, “Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia,” Theor. Appl. Climatol., Vol.96, pp. 155–171, 2009, doi:10.1007/s00704-008-0020-x.
  9. [9] K. Takara, S. Kim, Y. Takeuchi, and E. Nakakita, “Assessing climate change impact on water resources in the Tone River basin, Japan, using super-high-resolution atmospheric model output,” J. Disas. Res., Vol.4, No.1, pp. 12–23, 2009.
  10. [10] M. G. Grillakis, A. G. Koutroulis, and I. K. Tsanis, “Climate change impact on the hydrology of Spencer Creek watershed in Southern Ontario, Canada,” J. Hydrol., Vol.409, pp. 1–19, 2011.
  11. [11] G. Heinrich and A. Gobiet, “The future of dry and wet spells in Europe: a comprehensive study based on the ENSEMBLES regional climate models,” Int. J. Climatol., Vol.32, pp. 1951–1970, 2012. doi:10.1002/joc.2421.
  12. [12] A. Hasegawa, M. Gusyev, T. Ushiyama, J. Magome, and Y. Iwami, “Drought assessment in the Pampanga River basin, the Philippines – Part 2: A comparative SPI approach for quantifying climate change hazards,” In T. Weber, M. J. McPhee, and R. S. Anderssen (Eds.), MODSIM2015, 21st International Congress on Modeling and Simulation, pp. 2388–2394, Gold Coast, Australia, Dec., 2015, Modelling and Simulation Society of Australia and New Zealand, ISBN: 978-0-9872143-5-5, http://www.mssanz.org.au/modsim2015/L13/hasegawa.pdf [accessed December 22, 2015]
  13. [13] R. Mizuta, H. Yoshimura, H. Murakami, M. Matsueda, H. Endo, T. Ose, K. Kamiguchi, M. Hosaka, M. Sugi, S. Yukimoto, S. Kusunoki, and A. Kitoh, “Climate simulations using MRI-AGCM3.2 with 20-km grid,” J. Meteor. Soc. Japan, Vol.90A, pp. 233–258, 2012, doi:10.2151/jmsj.2012-A12.
  14. [14] A. Kitoh and H. Endo, “Changes in precipitation extremes projected by a 20-km mesh global atmospheric model,” Wea. and Clim. Extremes, Vol.11, pp. 41–51, 2016, doi:10.1016/j.wace.2015.09.001.
  15. [15] K. E. Taylor, R. J. Stouffer, and G. A. Meehl, “An overview of CMIP5 and the experiment design,” Bull. Amer. Meteor. Soc., Vol.93, No.4, pp. 485–498, 2012, doi:10.1175/BAMS-D-11-00094.1.
  16. [16] R. Mizuta, O. Arakawa, T. Ose, S. Kusunoki, H. Endo, and A. Kitoh, “Classification of CMIP5 future climate responses by the tropical sea surface temperature changes,” SOLA, Vol.10, pp. 167–171, 2014, doi:10.2151/sola.2014-035.
  17. [17] A. Yatagai, K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, “APHRODITE constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges,” Bull. Amer. Meteor. Soc., Vol.93, No.9, pp. 1401–1415, 2012, doi:10.1175/BAMS-D-11-00122.1.
  18. [18] H. Inomata, K. Takeuchi, and K. Fukami, “Development of a statistical bias correction method for daily precipitation data of GCM20,” Annu. J. Hydraul. Engr, JSCE, Vol.55, pp. 247–252, 2011.
  19. [19] J. Magome, M. A. Gusyev, A. Hasegawa, and K. Takeuchi, “River discharge simulation of a distributed hydrological model on global scale for the hazard quantification,” In T. Weber, M. J. McPhee, and R. S. Anderssen (Eds.), MODSIM2015, 21st International Congress on Modeling and Simulation, pp. 1593–1599, Gold Coast, Australia, Dec., 2015, Modelling and Simulation Society of Australia and New Zealand, ISBN: 978-0-9872143-5-5, http://www.mssanz.org.au/modsim2015/G5/magome.pdf [accessed December 22, 2015]
  20. [20] S. Kudo, T. Sayama, A. Hasegawa, and Y. Iwami, “Analysis of flood risk change in future climate in terms of discharge and inundation in the Solo River basin,” In ICWRER2016, 7th International Conference on Water Resources and Environment Research, pp. p-05-1–p-05-6, Kyoto, Japan, Jun., 2016.
  21. [21] Y. Kwak, J. Magome, A. Hasegawa, and Y. Iwami, “Global flood exposure assessment under climate and socio-economic scenarios for disaster risk reduction,” In ICWRER2016, 7th International Conference on Water Resources and Environment Research, pp. s01-07-1–s01-07-6, Kyoto, Japan, Jun., 2016.
  22. [22] M. A. Gusyev, A. Hasegawa, J. Magome, P. Sanchez, A. Sugiura, H. Umino, H. Sawano, and Y. Tokunaga, “Evaluation of water cycle compartments under climate change: a comparison of standardized indices in the Pampanga, Solo and Chao Phraya basins,” J. Disas. Res., Vol.11, No.6, 2016 (this issue).
  23. [23] N. B. Guttman, “Accepting the standardized precipitation index: A calculation algorithm,” J. Amer. Water Resour. Assoc., Vol.35, No.2, pp. 311–322, 1999.
  24. [24] World Meteorological Organization, “Standardized Precipitation Index User Guide,” WMO-No. 1090, 2012, (M. Svoboda, M. Hayes and D. Wood), Geneva.
  25. [25] A. Loukas and L. Vasiliades, “Probabilistic analysis of drought spatiotemporal characteristics in Thessaly region, Greece,” Natural Hazards and Earth System Sciences, Vol.4, pp. 719–731, 2004.
  26. [26] H. Wu, M. J. Hayes, D. A. Wilhite, and M. D. Svobada, “The effect of the length of record on the standardized precipitation index calculation,” Int. J. Climatol., Vol.25, pp. 505–520, 2005, doi:10.1002/joc.1142.
  27. [27] H. C. S. Thom, “A note on the gamma distribution,” Mon. Wea. Rev., Vol.86, No.4, pp. 117–122, 1958.
  28. [28] M. Abramowitz and I. A. Stegun (Eds.), ”Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables,” Dover Publications, Inc., New York, 1965.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Dec. 07, 2018