Paper:
Implementation of Real-Time Flood Prediction and its Application to Dam Operations by Data Integration Analysis System
Yoshihiro Shibuo*1,†, Eiji Ikoma*2, Oliver Saavedra Valeriano*3, Lei Wang*4, Peter Lawford*5, Masaru Kitsuregawa*2,*6, and Toshio Koike*1,*5
*1International Centre for Hydrological and Flood Risk Management, Public Work Research Institute
1-6 Minamihara, Tsukuba, Ibaraki 305-8516, Japan
†Corresponding author,
*2Institute of Industrial Science, the University of Tokyo, Tokyo, Japan
*3Civil and Environmental Engineering Research Center, Bolivian Private University, Cochabamba, Bolivia
*4Chinese Academy of Sciences, Inst. Tibetan Plateau Research, Beijing, China
*5Department of Civil Engineering, the University of Tokyo, Tokyo, Japan
*6National Institute of Informatics, Tokyo, Japan
- [1] H. Kardhana and A. Mano, “Uncertainty Evaluation in a Flood Forecasting Model Using JMA Numerical Weather Prediction,” J. of Disaster Research, Vol.4, No.4, pp. 272-277, 2009.
- [2] Y. Sugihara, S. Imagama, N. Matsunaga, and Y. Hisada, “Numerical Experiments on Spatially Averaged Precipitation in Heavy Rainfall Event Using the WRF Model,” J. of Disaster Research, Vol.10, No.3, pp. 436-447, 2015.
- [3] Y. Shibuo, E. Ikoma, O. Saavedra, L. Wang, P. Koudelova, M. Kitsuregawa, and T. Koike, “Development of operational realtime ensemble flood forecast system,” Annual J. of Hydraulic Engineering, JSCE, B1 (Hydraulic Engineering), Vol.70, No.4, pp. I_397-I_402, 2014.
- [4] T. Sayama, Y. Tachikawa, and K. Taara, “ Data assimilation of a distributed rainfall-runoff prediction system by Kalman filter with bias correction,” Doboku Gakkai Ronbunshuu B, Vol.64, No.4, pp. 226-239, 2008.
- [5] Y. Tachikawa, J. Sudo, M. Shiba, K. Yorozu, and S. Kim, “ Development of a real-time river stage forecasting method using a particle filter,” JSCE, B1 (Hydraulic Engineering), Vol.67, No.4, pp. I_511-I_516, 2011.
- [6] Q. Xiao and J. Sun, “Multiple radar data assimilation and short-range QPF of a squall line observed during IHOP_2002,” Mon. Wea. Rev., 135, pp. 3318-3404, 2007.
- [7] E. M. Sukovich, F. Martin Ralph, F. E. Barthold, D. W. Reynolds, and D. R. Novak, “Extreme quantitative precipitation forecast performance at the weather prediction center from 2001 to 2011,” Wea. Forecasting, Vol.29, pp. 894-911, 2014.
- [8] L. Wang, T. Koike, K. Yang, T. K. Jackson, R. Bindlish, and D. Yang, “Development of a distributed biosphere hydrological model and its evaluation with the Southern Great Plains Experiments (SGP97 and SGP99),” J. Geophys. Res., Vol.114, D08107, doi:10.1029/2008JD010800, 2009.
- [9] D. Yang, T. Koike, and H. Tanizawa, “Application of a distributed hydrological model and weather radar observations for flood management in the upper Tone River of Japan,” Hydrol. Process., Vol.18, pp. 3119-3132, 2004.
- [10] P. J. Sellers, D. A. Randall, G. J. Collatz, J. A. Berry, C. B. Field, D. A. Dazlich, C. Zhang, G.D. Collelo, and L. Bounoua, “A revised land surface parameterization (SiB2) for atmospheric GCMs. 1. Model formulation,” J. Climate, Vol.9, pp. 676-705, 1996.
- [11] L. Wang, T. Koike, K. Yang, and P. J.-F. Yeh, “Assessment of a distributed biosphere hydrological model against streamflow and MODIS land surface temperature in the upper Tone River Basin,” J. Hydrol., Vol.377, pp. 21-34, 2009.
- [12] M. R. J. Turner, J. P. Walker, and P. R. Oke, “Ensemble member generation for sequential data assimilation,” Remote Sens. Environ., Vol.112, pp. 1421-1433, 2008.
- [13] O. Saavedra Valeriano, T. Koike, K. Yang, T. Graf, X. Li, L. Wang, and X. Han, “Decision support for dam release during floods using a distributed biosphere hydrological model driven by quantitative precipitation forecasts,” Water Resour. Res., Vol.46, W10544, 2010.
- [14] E. E. Ebert, and J. L. McBride, “Verification of precipitation in weather systems: Determination of systematic errors,” J. Hydrol., Vol.239, pp. 179-202, 2000.
- [15] P. Goovaerts,“ Geostatistics for Natural Resources Evaluation,” p. 483, Oxford Univ. Press, New York, 1997.
- [16] R. Seto, T. Koike, and M. Rasmy, “Development of a Satellite Land and Cloud Data Assimilation System Coupled with Wrf, and its Application to Kanto Area,” JSCE, B1 (Hydraulic Engineering), Vol.70, No.4, pp. I_ 535-I_540, 2014.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.