JDR Vol.11 No.4 pp. 647-661
doi: 10.20965/jdr.2016.p0647


Uncertainty in Tsunami Sediment Transport Modeling

Bruce Jaffe*,†, Kazuhisa Goto**, Daisuke Sugawara***, Guy Gelfenbaum*, and SeanPaul La Selle*

*US Geological Survey Pacific Coastal and Marine Science Center
2885 Mission Street, Santa Cruz, CA, 95060, USA

Corresponding author,

**International Research Institute of Disaster Science, Tohoku University, Sendai, Japan

***Museum of Natural and Environmental History, Shizuoka, Japan

May 5, 2016
July 30, 2016
August 1, 2016
tsunami sediment transport, modeling, uncertainty, sedimentary deposits

Erosion and deposition from tsunamis record information about tsunami hydrodynamics and size that can be interpreted to improve tsunami hazard assessment. We explore sources and methods for quantifying uncertainty in tsunami sediment transport modeling. Uncertainty varies with tsunami, study site, available input data, sediment grain size, and model. Although uncertainty has the potential to be large, published case studies indicate that both forward and inverse tsunami sediment transport models perform well enough to be useful for deciphering tsunami characteristics, including size, from deposits. New techniques for quantifying uncertainty, such as Ensemble Kalman Filtering inversion, and more rigorous reporting of uncertainties will advance the science of tsunami sediment transport modeling. Uncertainty may be decreased with additional laboratory studies that increase our understanding of the semi-empirical parameters and physics of tsunami sediment transport, standardized benchmark tests to assess model performance, and development of hybrid modeling approaches to exploit the strengths of forward and inverse models.

Cite this article as:
B. Jaffe, K. Goto, D. Sugawara, G. Gelfenbaum, and S. Selle, “Uncertainty in Tsunami Sediment Transport Modeling,” J. Disaster Res., Vol.11, No.4, pp. 647-661, 2016.
Data files:
  1. [1] A. L. Moore, B. G. McAdoo, and A. Ruffman, “Landward fining from multiple sources in a sand sheet deposited by the 1929 Grand Banks tsunami, Newfoundland,” Sedimentary Geology, Vol.200, pp. 336-346, 2007, j.sedgeo.2007.01.012.
  2. [2] B. E. Jaffe and G. Gelfenbaum, “A simple model for calculating tsunami flow speed from tsunami deposits,” Sedimentary Geology 200, pp. 347-361, 2007, j.sedgeo.2007.01.013.
  3. [3] B. E. Jaffe, K. Goto, D. Sugawara, B. Richmond, S. Fujino, and Y. Nishimura, “Flow speed estimated by inverse modeling of sandy tsunami deposits: results from the 11 March 2011 tsunami on the coastal plain near the Sendai Airport, Honshu, Japan,” Sedimentary Geology, Vol.282, pp. 90-109, 2012,
  4. [4] A. R. Gusman, Y. Tanioka, and T. Takahashi, “Numerical experiment and a case study of sediment transport simulation of the 2004 Indian Ocean tsunami in Lhok Nga, Banda Aceh, Indonesia,” Earth Planet Space, Vol.64, pp. 817-827, 2012, doi:10.5047/eps.2011.10.009.
  5. [5] D. Sugawara, K. Goto, and B. E. Jaffe, “Numerical models of tsunami sediment transport – Current understanding and future directions,” Marine Geology, Vol.352, pp. 295-320, 2014.
  6. [6] H. Tang and R. Weiss, “A model for tsunami flow inversion from deposits,” Marine Geology, Vol.370, pp. 55-62, 2015,
  7. [7] R.Ç. Witter, B. E. Jaffe, B. E., Y. Zhang, and G. Priest, “Reconstructing hydrodynamic flow parameters of the 1700 tsunami at Cannon Beach, Oregon, USA,” Natural Hazards, Vol.63, No.1, pp. 223-240, 2012, doi:10.1007/s11069-011-9912-7.
  8. [8] Y. Namegaya and K. Satake, “Reexamination of the A. D. 869 Jogan earthquake size from tsunami deposit distribution, simulated flow depth, and velocity,” Geophysical Research Letters, Vol.41, pp. 2297-2303, 2014, doi:10.1002/2013GL058678.
  9. [9] J. P. Eaton, D. H. Richter, and W. U. Ault, “The tsunami of May 23, 1960, on the Island of Hawaii,” Seis. Soc. Am. Bull., Vol.51, pp. 135-157, 1961.
  10. [10] D. Sugawara, T. Takahashi, and F. Imamura, “Sediment transport due to the 2011 Tohoku-oki tsunami at Sendai: Results from numerical modeling,” Marine Geology, Vol.358, pp. 18–37, 2014,
  11. [11] R. C. Witter, G. A. Carver, R. W. Briggs, G. Gelfenbaum, R. D. Koehler, S. P. La Selle, A. M. Bender, S. E. Engelhart, E. Hemphill-Haley, and T. D. Hill, “Unusually large tsunamis frequent a currently creeping part of the Aleutian megathrust,” Geophys. Res. Lett., Vol.42, 2015, doi:10.1002/2015GL066083.
  12. [12] G. Gelfenbaum, D. Vatvani, B. Jaffe, and F. Dekker, “Tsunami inundation and sediment transport in vicinity of coastal mangrove forest,” Coastal Sediments ’07, Vol.2, pp. 1117-1128, 2007, doi:10.1061/40926(239)86
  13. [13] A. Apotsos, B. Jaffe, G. Gelfenbaum, and E. Elias, “Modeling time-varying tsunami sediment deposition,” Proc. of Coastal Dynamics 2009: Impacts of Human Activities on Dynamic Coastal Processes, World Scientific Publishing Co., pp. 1-15, 2009, doi:10.1142/9789814282475_0037.
  14. [14] L. Li, Q. Qui and Z. Huang, “Numerical modeling of the morphological change in Lhok Nga, west Banda Aceh, during the 2004 Indian Ocean tsunami: understanding tsunami deposits using a forward modeling method,” Natural Hazards, 2012,
  15. [15] N. Kihara and M. Matsuyama, “Numerical simulations of sediment transport induced by the 2004 Indian Ocean tsunami near Kirinda port in Sri Lanka,” Proc. of 32nd Conf. on Coastal Engineering (Shanghai, China, 6 pp.), 2010.
  16. [16] A. Apotsos, M. Buckley, G. Gelfenbaum, B. Jaffe, and D. Vatvani, D., “Nearshore tsunami inundation model validation: toward sediment transport applications,” Pure and Applied Geophysics, Vol.168, pp. 2097–2119, 2011.
  17. [17] A. Apotsos, G. Gelfenbaum, and B. Jaffe, “Process-based modeling of tsunami inundation and sediment transport,” J. of Geophysical Research, Vol.116, F01006, 2011, 10.1029/2010JF001797.
  18. [18] A. Apotsos, G. Gelfenbaum, B. Jaffe, S. Watt, B. Peck, M. Buckley, and A. Stevens, “Tsunami inundation and sediment transport in a sediment-limited embayment on American Samoa,” Earth Science Reviews, Vol.107, pp. 1-11, 2011,
  19. [19] T. Takahashi, N. Shuto, F. Imamura, and D. Asai, “ Modeling sediment transport due to tsunamis with exchange rate between bedload layer and suspended load layer,” Proc. of the Int. Conf. Coastal Engineering, pp. 1508-1519, 2000.
  20. [20] J. Takahashi, K. Goto, T. Oie, H. Yanagisawa, and F. Imamura, “Inundation and topographic change due to the 2004 Indian Ocean Tsunami at the Kirinda port, Sri Lanka,” Annual J. of Coastal Engineering, JSCE, Vol.55, pp. 251-255, 2008.
  21. [21] T. Yoshii, M. Ikeno, M. Matsuyama, and N. Fujii, “Pick-up rate of suspended sand due to tsunami,” Proc. of the Int. Conf. Coastal Engineering 2010, 15p., 2010.
  22. [22] L. Li, Z. Huang, Q. Qui, D.H. Natawidjaja, and K. Sieh, “Tsunami-induced coastal change: scenario studies for Painan, West Sumatra, Indonesia,” Earth, Planets and Space, Vol.64, pp. 799-816, 2012b.
  23. [23] B. Ontowirjo, R. Paris, and A. Mano, “Modeling of coastal erosion and sediment deposition during the 2004 Indian Ocean tsunami in Lhok Nga, Sumatra Indonesia,” Natural Hazards, 2012,
  24. [24] L. C. van Rijn, “Sediment transport, Part I: Bed load transport,” J. of Hydraulic Engineering, Vol.110, pp. 1431-1456, 1984.
  25. [25] L. C. van Rijn, “Sediment transport, Part II: Suspended load transport,” J. of Hydraulic Engineering, Vol.l110, pp. 1613-1641, 1984.
  26. [26] L. C. Van Rijn, D. J. R. Walstra, and M. van Ormondt, “Description of TRANSPOR 2004 (TR2004) and implementation in DELFT3D-online,” Rep. Z3748. Delft Hydraul, Delft, Netherlands, 2004.
  27. [27] F. Imamura, K. Goto, and S. Ohkubo, “A numerical model for the transport of a boulder by tsunami,” J. Geophys. Res., Vol.113, C01008, 2008, doi:10.1029/2007JC004170.
  28. [28] N.A.K. Nandasena, R. Paris, and N. Tanaka, “Numerical assessment of boulder transport by the 2004 Indian ocean tsunami in Lhok Nga, West Banda Aceh (Sumatra, Indonesia),” Computers & Geosciences, Vol.37, pp. 1391-1399, 2011.
  29. [29] J. Nott, “Waves, coastal boulder deposits and the importance of the pre-transport setting,” Earth Planet Sci Lett 210: pp. 269-276, 2003.
  30. [30] R. Noormets, K. A. W. Crook, and E. A. Felton, “Sedimentology of rocky shorelines: 3: hydrodynamics of megaclast emplacement and transport on a shore platform, Oahu, Hawaii,” Sediment Geol, Vol.172, pp. 41-65, 2004.
  31. [31] M. Buckley, B. E. Jaffe, Y. Wei, and S. Watt, “Estimated velocities and inferred cause of overwash that emplaced inland fields of cobbles and boulders at Anegada, British Virgin Islands,” Natural Hazards, Vol.63, No.1, pp. 133-149. 2012, doi:10.1007/s11069-011-9725-8.
  32. [32] R. L. Soulsby, D.E. Smith, and A. Ruffman, “Reconstructing tsunami run-up from sedimentary characteristics – a simple mathematical model,” Coastal Sediments Vol.07, No.2, pp. 1075-1088, 2007.
  33. [33] D. E. Smith, I. D. L. Foster, D. Long, and S. Shi, “Reconstructing the pattern and depth of flow onshore in a palaeotsunami from associated deposits,” Sedimentary Geology, Vol.200, pp. 362-371, 2007,
  34. [34] C. J. Roy and W. L. Oberkampf, “A complete framework for verification, validation, and uncertainty quantification in scientific computing,” Computer Methods in Applied Mechanics and Engineering, Vol.200, No.25, pp. 213-214, 2011, DOI: 10.1016/j.cma.2011.03.016.
  35. [35] W. L. Oberkampf and C. J. Roy, “Verification and Validation in Scientific Computing,” Cambridge University Press, New York, 790pp., 2010.
  36. [36] P.S. Hill, A.R. Nowell, and P.A. Jumars, “Flume evaluation of the relationship between suspended sediment concentration and excess boundary shear stress,” J. of Geophysical Research, Vol.93, No.10, pp. 12499-12 509, 1988.
  37. [37] O. S. Madsen, T. A. Chisholm, and L. D. Wright, “Suspended sediment suspension on the inner shelf during extreme storms,” Proc. of the 24th Int. Conf. on Coastal Engineering, ASCE, Vol.2, pp. 1849-1864, 1993.
  38. [38] L. C. van Rijn, “Principles of sediment transport in rivers, estuaries and coastal areas,” Aqua Publications, Amsterdam, 1993.
  39. [39] L. Li and Z. Huang, “Modeling the change of beach profile under tsunami waves: a comparison of selected sediment transport models,” J. of Earthquake and Tsunami, Vol.7, No.1, 29pp., 2013, doi:10.1142/S1793431113500012.
  40. [40] R. A. Bagnold, “An approach to the sediment transport problem from general physics,” U.S. Geological Survey Professional Paper 422-I, 42pp., 1966.
  41. [41] F. Engelund and E. Hansen, “A monograph on sediment transport in alluvial streams,” Teknisk Forlag, 65pp., 1967.
  42. [42] E. W. Bijker, “Some considerations about scales for coastal models with moveable bed,” Delft Hydraulics Laboratory Report, Delft, The Netherlands.
  43. [43] P. Ackers and W. R. White, “Sediment transport: New approach and analysis,” J. of Hydraulic Division ASCE 99(HY11). pp. 2041-2060, 1973.
  44. [44] C. T. Yang, “Unit stream power equations for total load,” J. of Hydrology, Vol.40, pp. 123-138, 1979.
  45. [45] G. Gelfenbaum and J. D. Smith, “Experimental evaluation of a generalized suspended-sediment transport theory,” In Shelf Sands and Sandstones (R. J. Knight and J. R. Mclean (Eds.)), Canadian Society of Petroleum Geologists, Memoir II, pp. 133-144, 1986.
  46. [46] D. C. Conley, S. Falchetti, I. P. Lohmann, and M. Brocchini, “The effects of flow stratification by non-cohesive sediment on transport in high-energy wave-driven flows,” J. Fluid Mech., Vol.610, pp. 43-67, 2008, doi:10.1017/S0022112008002565.
  47. [47] T. Baldock, M. Tomkins, P. Nielsen, and M. Hughes, “Settling velocity of sediments at high concentrations,” Coastal Engineering, Vol.51, pp. 91-100, 2004.
  48. [48] L. C. van Rijn, “Unified view of sediment transport by currents and waves II: Suspended transport,” J. of Hydraulic Engineering, Vol.133, pp. 668-689, 2007.
  49. [49] R. A. Morton, G. Gelfenbaum, M. L. Buckley, and B. M. Richmond, “Geological effects and implications of the 2010 tsunami along the central coast of Chile,” Sedimentary Geology, Vol.242, pp. 34-51, 2011, doi:10.1016/j.sedgeo.2011.09.004.
  50. [50] G. Scicchitano, C. Pignatelli, C. R. Spampinato, A. Piscitelli, M. Milella, C. Monaco, and G. Mastronuzzi, “Terrestrial Laser Scanner techniques in the assessment of tsunami impact on the Maddalena peninsula (south-eastern Sicily, Italy),” Earth, Planets and Space, Vol.64, pp. 889-903, 2012.
  51. [51] M. Spiske, Z. Borocz, and H. Bahlburg, “The role of porosity in discriminating between tsunami and hurricane emplacement of boulders – A case study from the Lesser Antilles, southern Caribbean,” Earth and Planetary Science Letters, Vol.268, pp. 384-396, 2008.
  52. [52] J. Goff, R. Weiss, C. Courtney, and D. Dominey-Howes, “Testing the hypothesis for tsunami boulder deposition from suspension,” Marine Geology, Vol.277, pp. 73-77, 2010, doi:10.1016/j.margeo.2010.08.003.
  53. [53] N. A. K. Nandasena, R. Paris, and N. Tanaka, “Reassessment of hydrodynamic equations: minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis),” Marine Geology, Vol.281, pp. 70-84, 2011b.
  54. [54] C. L. Kain, G. Gomez, and A. E. Moghaddam, “Comment on ‘Reassessment of hydrodynamic equations: minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis), by N.A.K. Nandasena, R. Paris and N. Tanaka [Marine Geology 281, 70–84],” Marine Geology, Vol.319–322, pp. 75-76. 2012.
  55. [55] B. M. Richmond, S. Watt, M. L. Buckley, B. E. Jaffe, G. Gelfenbaum, and R. Morton, “Recent storm and tsunami coarse-clast deposit characteristics, Southeast Hawaii,” Marine Geology, Vol.283, pp. 79-89, 2011, doi:10.1016/j.margeo.2010.08.00.
  56. [56] N. A. K. Nandasena and N. Tanaka, “Boulder transport by high energy: numerical model fitting experimental observations,” Ocean Engineering, Vol.57, pp. 163-179, 2013.
  57. [57] R. Weiss and P. Diplas, “Untangling boulder dislodgement in storms and tsunamis: Is it possible with simple theories?,” Geochemistry, Geophysics, Geosystems, Vol.16, No.3, pp. 890-898, 2015.
  58. [58] R. Weiss, “The mystery of boulders moved by tsunamis and storms,” Marine Geology, 295-298, pp. 28-33, 2012, doi:10.1016/j.margeo.2011.12.001.
  59. [59] J. Bourgeois and B. MacInnes, “Tsunami boulder transport and other dramatic effects of the 15 November 2006 central Kuril island tsunami on the island of Mantua,” Zeitschrift fcur Geomorphologie Vol.54, No.3, pp. 175-195, 2010.
  60. [60] N. Yamaguchi and T. Sekiguchi, “Effects of tsunami magnitude and terrestrial topography on sedimentary processes and distribution of tsunami deposits in flume experiments,” Sedimentary Geology, Vol.328, pp. 115-121, 2015,
  61. [61] J. P. L. Johnson, K. Delbecq, W. Kim, and D. Mohrig, “Experimental tsunami deposits: Linking hydrodynamics to sediment entrainment, advection lengths and downstream fining,” Geomorphology, Vol.253, pp. 478-490, 2016, 10.1016/j.geomorph.2015.11.004
  62. [62] K. Huntington, J. Bourgeois, G. Gelfenbaum, P. Lynett, B. Jaffe, H. Yeh, and R. Weiss, “Sandy signs of a tsunami’s onshore depth and speed,” Eos, Vol.88, No.52, pp. 577-578, 2007.
  63. [63] R. Moss and S.H. Schneider, “Uncertainties in the IPCC TAR: Recommendations to lead authors for more consistent assessment and reporting,” Unpublished document, 1999, from [accessed April 26, 2016]
  64. [64] J. Wang, H. Tang, H. Xiao, and R. Weiss, “Inversion of Tsunamis Characteristics from Sediment Deposits Based on Ensemble Kalman Filtering,” Retrieved from [accessed April 26 2016] (in review)
  65. [65] H. Tang, J. Wang, R. Weiss, and H. Xiao, “TSUFLIND-EnKF inversion model applied to tsunami deposits for estimation of transient flow depth and speed with quantified uncertainties,” Retrieved from [accessed April 26, 2016] (in review)
  66. [66] H. Bahlburg and R. Weiss, “Sedimentology of the December 26, 2004, Sumatra tsunami deposits in eastern India (Tamil Nadu) and Kenya,” Int. J. of Earth Sciences, Vol.96, No.6, 2007.
  67. [67] D. Sugawara, B. Jaffe, K. Goto, G. Gelfenbaum, and S. La Selle, “Exploring hybrid modeling of tsunami flow and deposit characteristics,” Proc. of Coastal Sediments 15, 2015, doi: 10.1142/9789814689977_0185
  68. [68] M. Spiske, R. Weiss, H. Bahlburg, J. Roskosch, and H. Amijaya, “The TsuSedMod inversion model applied to the deposits of the 2004 Sumatra and 2006 Java tsunami and implications for estimating flow parameters of palaeo-tsunami,” Sedimentary Geology, Vol.224, No.1, pp. 29-37, 2010.
  69. [69] D. Brill, A Pint, K. Jankaew, P. Frenzel, K. Schwarzer, A. Bott, and H. Bruckner, “Sediment transport and hydrodynamic parameters of tsunami waves recorded in onshore geoarchives,” J. of Coastal Research, Vol.30, No.5, pp. 922-941. 2014, doi:
  70. [70] M. Spiske, J. Piepenbreier, C. Benavente, A. Kunz, H. Bahlburg, and J. Steffahn, “Historical tsunami deposits in Peru: Sedimentology, inverse modeling and optically stimulated luminescence dating,” Quaternary Int. 305, pp. 31-44, 2013.
  71. [71] L. C. van Rijn, “Unified view of sediment transport by currents and waves. I: Initiation of motion, bed roughness, and bed-load transport,” J. of Hydraulic Engineering, Vol.133, pp. 649-667, 2007.
  72. [72] R. Soulsby, “Dynamics of marine sands,” Thomas Telford Publications, London, 270pp., ISBN 0 7277 2584 X, 1997.
  73. [73] J. S. Ribberink, “Bed-load transport for steady flows and unsteady oscillatory flows,” Coastal Engineering, Vol.34, pp. 59-82, 1998.
  74. [74] L. Ashida and M. Michiue, “Study on hydraulic resistance and bed-load transport rate in alluvial streams,” Proc. of the Japanese Society of Civil Engineers, Vol.206, pp. 59-69, 1972 (in Japanese).
  75. [75] Takahashi, T., T. Kurokawa, M. Fujita, and H. Shimada, “Hydraulic experiment on sediment transport due to tsunamis with various sand grain size,” J. of JSCE, B2 (Coastal Engineering), Vol. 67, pp. 231-235, 2011.
  76. [76] W. Dietrich, “Settling velocity of natural particles,” Water Resources Research, Vol.18, pp. 1615-1626, 1982.
  77. [77] R. I. Ferguson and M. Church, “A Simple Universal Equation for Grain Settling Velocity,” J. of Sedimentary Research, Vol.74, No.6, pp. 933-937, 2006, doi:10.1306/051204740933
  78. [78] K. Satake, “Real-time inversion of tsunami waveforms,” presented at Japan Meteorological Agency meeting held in Tokyo on 11 March 2011, Retrieved from [accessed March 21, 2016]

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Jan. 19, 2019