Paper:
Human Mobility Estimation Following Massive Disaster Using Filtering Approach
Akihito Sudo*, Takehiro Kashiyama*, Takahiro Yabe**, Hiroshi Kanasugi***, and Yoshihide Sekimoto*
*Institute of Industrial Sience, the University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo, Japan
**Department of Civil Engineering, the University of Tokyo, Tokyo, Japan
***Earth Observation Data Integration and Fusion Research Initiative, the University of Tokyo, Tokyo, Japan
- [1] F. Calabrese, G. Di Lorenzo, L. Liu, and C. Ratti, “Estimating origin-destination flows using mobile phone location data,” IEEE Pervasive Computing, Vol.4, No.10, p. 3644, 2011.
- [2] A. Sevtsuk and C. Ratti, “Does urban mobility have a daily routine? learning from the aggregate data of mobile networks,” Journal of Urban Technology, Vol.17, No.1, p. 4160, 2010.
- [3] J. Reades, F. Calabrese, and C. Ratti, “Eigenplaces: analysing cities using the space-time structure of the mobile phone network,” Environment and Planning B: Planning and Design, Vol.36, No.5, pp. 824-836, 2009.
- [4] Marta C. Gonzalez, A. H. Cesar, and A. Barabasi, “Understanding individual human mobility patterns,” Nature, Vol.453, No.7196, pp. 779-782, 2008.
- [5] Adam J. Pel, C. J. Bliemer, and S. P. Hoogendoorn, “A review on travel behaviour modelling in dynamic traffic simulation models for evacuations,” Transportation, Vol.39, No.1, pp. 97-123, 2012.
- [6] G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian nonlinear state space models,” Journal of computational and graphical statistics, Vol.5, No.1, pp. 1-25, 1996.
- [7] P. Cheng, Z. Qiu, and B. Ran, “Particle filter based traffic state estimation using cell phone network data,” In Intelligent Transportation Systems Conference, ITSC’6, IEEE, pp. 1047-1052, IEEE, 2006.
- [8] K. Sasaki, K. Nakazawa, and T. Yamamoto, “Analysis of Traffic Volume Variation by Bayesian State-Space Model,” Japan Society of Traffic Engineers, Vol.47, No.2, pp. 27-32, 2012.
- [9] D. B. Work, O.-P. Tossavainen, Q. Jacobson, and A. M. Bayen, “Lagrangian sensing: traffic estimation with mobile devices,” In American Control Conference, ACC’9., pp. 1536-1543. IEEE, 2009.
- [10] D. B. Work, O.-P. Tossavainen, S. Blandin, A. M. Bayen, T. Iwuchukwu, and K. Tracton, “An ensemble Kalman filtering approach to highway traffic estimation using GPS enabled mobile devices,” Decision and Control, 2008. CDC 2008, 47th IEEE, Conference on. IEEE, 2008.
- [11] T. Nakamura, Y. Sekimoto, T. Usui, and R. Shibasaki, “Estimation of People Flow in Urban Level using Particle Filter,” Japan Society of Civil Engineers, Vol.69, No.3, pp. 227-236, 2013.
- [12] M. G. Demissie, G. H. de Almeida Correia, and C. Bento, “Intelligent road traffic status detection system through cellular networks handover information: An ex- ploratory study,” Transportation Research Part C: Emerging Technologies, Vol.32(0), pp. 76-88, 2013.
- [13] M. S. Iqbal, C. F. Choudhury, P. Wang, and C. M. Gonzalez, “Development of origindestination matrices using mobile phone call data,” Transportation Research Part C: Emerging Technologies, Vol.40, pp. 63-74, 2014.
- [14] X. Song, Q. Zhang, Y. Sekimoto, and R. Shibasaki, “Prediction of human emergency behavior and their mobility following large-scale disaster,” In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and datamining, p. 514. ACM, 2014.
- [15] L. Mihaylova and R. Boel, “A particle filter for freeway traffic estimation,” In Decision and Control, 2004. CDC. 43rd, IEEE Conference on, Vol.2, pp. 2106-2111, IEEE, 2004.
- [16] Y. Sekimoto, R. Shibasaki, H. Kanasugi, T. Usui, and Y. Shimazaki, “Pflow: Reconstructing people flow recycling large-scale social survey data,” IEEE Pervasive Computing, Vol.10, No.4, pp. 002735, 2011.
- [17] H. Okamura, M. Kuwabara, and Y. Toshio, “Development and Evaluation of Simulation Model ‘SOUND’,” Proceedings of Anual Conference of JSTE, pp. 93-96, 1996.
- [18] X. Song, Q. Zhang, Y. Sekimoto, R. Shibasaki, N. J. Yuan, and X. Xie, “A simulator of human emergency mobility following disasters: Knowledge transfer from big disaster data,” In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.
- [19] X. Lu, L. Bengtsson, and P. Holme, “Predictability of population displacement after the 2010 haiti earthquake,” Proceedings of the National Academy of Sciences, Vol.109, No.29, pp. 11576-11581, 2012.
- [20] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: user movement in location-based social networks,” In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1082-1090, ACM, 2011.
- [21] Y. Sekimoto, A. Nishizawa, and H. Yamada, “Data mobilization by digital archiving of the great east japan earthquake survey,” GIS-Theory and Application, Vol.21, No.2, pp. 87-95, 2013 (in Japanese).
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.