JDR Vol.10 No.4 pp. 595-603
doi: 10.20965/jdr.2015.p0595

Development Report:

A New Concept for Development of Quartz Crystal Microbalance Fire Prevention Sensors Modified with Nano-Assembled Thin Films

Seung-Woo Lee

Graduate School of Environmental Engineering, The University of Kitakyushu
1-1 Hibikino, Kitakyushu 808-0135, Japan

March 31, 2015
July 17, 2015
August 1, 2015
quartz crystal microbalance, gas sensors, real environment monitoring

In this report, we describe a new concept for the development of quartz crystal microbalance (QCM) fire prevention sensors modified with nano-assembled thin films. The first example is the fabrication of QCM gas sensors based on alternate adsorption of TiO2 and poly(acrylic acid) (PAA) for the sensitive detection of amine odors. The QCM sensors showed a linear response to ammonia at concentrations of 0.3–15 ppm, depending on the deposition cycle of the alternate TiO2/PAA layers. Ammonia binding is based on acid–base interaction with the free carboxylic acid groups of PAA, and the limit of detection of the 20-cycle TiO2/PAA400 film under exposure to ammonia was estimated to be 0.1 ppm. The second example, monitoring of relative humidity, used porphyrin-based nano-assembled thin films prepared by a layer-by-layer approach on QCM resonators. These films were also used to detect significant environmental changes (due to smoke, humidity, or hazardous material release), and the results revealed that QCM-based real-environment monitoring devices can be implemented.

Cite this article as:
S. Lee, “A New Concept for Development of Quartz Crystal Microbalance Fire Prevention Sensors Modified with Nano-Assembled Thin Films,” J. Disaster Res., Vol.10, No.4, pp. 595-603, 2015.
Data files:
  1. [1]  S. L. Rose-Peherson, R. E. Shaffer, S. J. Hart, F. W. Williams, D. T. Gottuk, B. D. Strehlen, and A. Hill, “Multi-criteria fire detection systems using a probabilistic neural network,” Sensors and Actuators B: Chemical, Vol.69, pp. 325-335, 2000.
  2. [2]  E. Scorsone, A. M. Pisanelli, and K. C. Persaud, “Development of an electronic nose for fire detection,” Sensors and Actuators B: Chemical, Vol.116, pp. 55-61, 2006.
  3. [3]  A. Sawada, T. Higashino, T. Oyabu, Y. Takei, H. Nanto, and K. Toko, “Gas sensor characteristics for smoldering fire caused by a cigarette smoke,” Sensors and Actuators B: Chemical, Vol.130, pp. 88-93, 2008.
  4. [4]  T. Ozawa, Y. Ishiguro, K. Toyoda, M. Nishimura, T. Sasahara, and T. Doi, “Detection of decomposed compounds from an early stage fire by an adsorption/combustion-type sensor,” Sensors and Actuators B: Chemical, Vol.108, pp. 473477, 2005.
  5. [5]  M. A. Jackson and I. Robins, “Gas sensing for fire detection: Measurements of CO, CO2, H2, O2, and smoke density in European standard fire tests,” Fire Safety Journal, Vol.22, pp. 181-205, 1994.
  6. [6]  W. R. Fahrner, R. Job, and M. Werner, “Sensors and smart electronics in harsh environment applications,” Microsystem Technologies, Vol.7, pp. 138-144, 2000.
  7. [7]  A. Michanek, N. Kristen, F. Höoöok, T. Nylander, and E. Sparr, “RNA and DNA interactions with zwitterionic and charged lipid membranes-A DSC and QCM-D study,” Biochimica et Biophysica Acta-Biomembranes, Vol.1798, pp. 829-838, 2010.
  8. [8]  A. R. Tehrani-Bagha and K. Holmberg, “Cationic ester-containing gemini surfactants: Physical-chemical properties,” Langmuir, Vol.26, pp. 9276-9282, 2010.
  9. [9]  R. Hao, D. Wang, X. Zhang, G. Zuo, H. Wei, R. Yang, Z. Zhang, Z. Cheng, Y. Guo, Z. Cui, and Y. Zhou, “Rapid detection of Bacillus anthracis using monoclonal antibody functionalized QCM sensor,” Biosensors and Bioelectronics, Vol.24, pp. 1330-1335, 2009.
  10. [10]  S. W. Lee, N. Takahara, S. Korposh, D. H. Yang, K. Toko, and T. Kunltake, “Nanoassembled thin film gas sensors. III. Sensitive detection of amine odors using TiO2/poly(acrylic acid) ultrathin film quartz crystal microbalance sensors,” Analytical Chemistry, Vol.82, pp. 2228-2236, 2010.
  11. [11]  G. Z. Sauerbrey, “Verwendung von Schwingquarzen zur Wägung düunner Schichten und zur Mikrowägung,” Zeitschrift füur Physik, Vol.155, pp. 206-222, 1959.
  12. [12]  D. Smith and P. vSpanvel, “The challenge of breath analysis for clinical diagnosis and therapeutic monitoringAnalyst, Vol.132, pp. 390-396, 2007.
  13. [13]  M. Bendahan, P. Lauque, C. Lambert-Mauriat, H. Carchano, and J. L. Seguin, “Sputtered thin films of CuBr for ammonia microsensors: Morphology, composition and ageing,” Sensors and Actuators B: Chemical, Vol.84, pp. 6-11, 2002.
  14. [14]  M. Sahm, A. Oprea, N. B^arsan, and U. Weimar, “Water and ammonia influence on the conduction mechanisms in polyacrylic acid films,” Sensors and Actuators B: Chemical, Vol.127, pp. 204-209, 2007.
  15. [15]  I. Ichinose, T. Kawakami, and T. Kunitake, “Alternate molecular layers of metal oxides and hydroxyl polymers prepared by the surface sol-gel process,” Advanced Materials, Vol.10, pp. 535-539, 1998.
  16. [16]  D. H. Yang, N. Takahara, N. Mizutani, S. W. Lee, and T. Kunitake, “Fabrication of TiO2 and cytochrome c alternate ultrathin films via a gas-phase surface sol-gel process,” Chemistry Letters, Vol.35, pp. 990-991, 2006.
  17. [17]  A. Morales-Bahnik, R. Czolk, and H. J. Ache, “An optochemical ammonia sensor based on immobilized metalloporphyrins,” Sensors and Actuators B: Chemical, Vol.18-19, pp. 493-496, 1994.
  18. [18]  S. Korposh, R. Selyanchyn, and S. W. Lee, “Nano-assembled thin film gas sensors. IV. Mass-sensitive monitoring of humidity using quartz crystal microbalance (QCM) electrodes,” Sensors and Actuators B: Chemical, Vol.147, pp. 599-606, 2010.
  19. [19]  R. Selyanchyn, S. Korposh, S. Wakamatsu, and S. W. Lee, “Simultaneous monitoring of humidity and chemical changes using quartz crystal microbalance sensors modified with nano-thin films,” Analytical Sciences, Vol.27, pp. 253-258, 2011.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Jan. 21, 2019