Paper:
Structural Damage Under Multiple Hazards in Coastal Environments
Megan C. McCullough*, Ahsan Kareem*, Aaron S. Donahue**,
and Joannes J. Westerink**
*NatHaz Modeling Laboratory, University of Notre Dame, Notre Dame, IN 46514, USA
**Computational Hydraulics Laboratory, University of Notre Dame, Notre Dame, IN 46514, USA
- [1] B. R. Ellingwood, D. V. Rosowsky, Y. Li, and J. H. Kim, “Fragility Assessment of Light-Frame Wood Construction Subjected to Wind and Earthquake Hazards,” Journal of Structural Engineering, Vol.130, pp. 1921-1930, 2004.
- [2] Y. Li and B. R. Ellingwood, “Framework for multihazard risk assessment and mitigation for wood-frame residential construction,” Journal of Structural Engineering, Vol.135, pp. 159-168, 2009.
- [3] G. Augusti and M. Ciampoli, “Performance-Based Design in Risk Assessment and Reduction,” Probabilistic Engineering Mechanics, Vol.23, pp. 496-508, 2008.
- [4] B. R. Ellingwood, “Structural reliability and performance-based engineering,” Structures and Buildings, Vol.161, pp. 199-207, 2008.
- [5] FEMA, “NEHRP Guidelines for the Seismic Rehabilitation of Buildings,” Federal Emergency Management Agency, Washington, D.C., 1997.
- [6] FEMA, “NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures,” Federal Emergency Management Agency Washington, D.C., 2000.
- [7] R. O. Hamburger and A. S. Whittaker, “Considerations in Performance-Based Blast Resistant Design of Steel Structures,” AISC-SINY Symposium on Resisting Blast and Progressive Collapse, New York, NY, 2003.
- [8] A. Kareem, “Structural Performance andWind Speed-Damage Correlation in Hurricane Alicia,” Journal of Structural Engineering, ASCE 111, pp. 2596-2610, 1985.
- [9] A. Kareem, “Performance of Cladding in Hurricane Alicia,” Journal of Structural Engineering, ASCE 112, pp. 2679-2693, 1986.
- [10] K. Mehta, J. Minor, and T. Reinhold, “Wind Speed-Damage Correlation in Hurricane Frederic,” Journal of Structural Engineering, ASCE 109, pp. 37-49, 1983.
- [11] N. Stubbs, “Estimation of Building Damage as a Result of Hurricanees in the Caribbean (A Primer),” Report to Organization of American States and USAID, Texas A&M University, 1996.
- [12] K. Gurley and R. Dixon, “Post 2004 Hurricanes Field Survey – an Evaluation of the Relative Performance of the Standard Building Code and the Florida Building Code,” Structural Research Communication No. 53102-2 Final report to Florida Building Commission, 2006.
- [13] Y. Li, and B. R. Ellingwood, “Hurricane damage to residential construction in the US: Importance of uncertainty modeling in risk assessment,” Engineering Structures, Vol.28, pp. 1009-1018, 2006.
- [14] E. S. Chan, H. F. Cheong, and K. Y. H. Gin, “Breaking-Wave Loads on Vertical Walls Suspended Above Mean Sea Level,” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE 121, pp. 195-202, 1995.
- [15] E. S. Chan, and W. K. Melville, “Deep-Water Plunging Wave Pressures on a Vertical Plane Wall,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol.417, pp. 95-131, 1988.
- [16] T. Tomiczek, A. B. Kennedy, and S. P. Rogers, “Collapse limit state fragilities of wood-framed residences from storm surge and waves during Hurricane Ike,” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 2013 (in press).
- [17] A. Kennedy, S. Rogers, A. Sallenger, and U. Gravois, “Building destruction from waves and surge on the Bolivar peninsula during hurricane Ike,” Journal of Waterway, Port, Coastal, and Ocean Engineering, doi:10.1061/(ASCE)WW.1943-5460.0000061, 2010.
- [18] J. A. Womble, D. A. Smith, and B. J. Adams, “Use of emerging remote-sensing technologies to determine neighborhood wind/water damage patterns,” in: D. Anderson, C. Ventura, D. Harvey, and M. Hoit (Ed.), ASCE/SEI Structures Congress 2008, Vancouver, British Columbia, Canada, 2008.
- [19] D. A. Smith, J. A. Womble, and F. T. Lombardo, “Constructing probable wind and water damage sequence from timelines – the technical perspective,” in: D. Anderson, C. Ventura, D. Harvey, and M. Hoit (Ed.), ASCE/SEI Structures Congress 2008, Vancouver, British Columbia, Canada, 2008.
- [20] S. D. Amoroso, and R. J. Coco Jr., “Effective Forensic Engineering Investigations of Hurricane “Wind vs. Water” Disputes: Techniques and Tools,” in: D. Anderson, C. Ventura, D. Harvey, and M. Hoit (Ed.), ASCE/SEI Structures Congress 2008, Vancouver, British Columbia, Canada, 2008.
- [21] ASCE, “Minimum design loads for buildings and other structures,” ASCE 7-10, American Society of Civil Engineers, Reston, VA, 2010.
- [22] F. J. Masters, P. J. Vickery, P. Bacon, and E. N. Rappaport, “Toward objective, standardized intensity estimates from surface wind speed observations,” American Meteorological Society, Vol.91, pp. 1665-1681, 2010.
- [23] D. K. Kwon and A. Kareem, “Comparative study of major international wind codes and standards for wind effects on tall buildings,” Engineering Structures, Vol.51, pp. 23-35, 2013.
- [24] I. M. Giammanco, J. L. Schroeder, and B. D. Hirth, “Hurricane Katrina Deployment Summary: Texas Tech University Hurricane Research Team,” Wind Science and Engineering Research Center, Lubbock, Texas, 2006.
- [25] R. A. Luettich, and J. J. Westerink, “Formulation and Numerical Implementation of the 2D/3D ADCIRC Finite Element Model Version 44.xx,” 2004,
http://adcirc.org/adcirc theory 2004 12 08.pdf [accessed May 5, 2013]. - [26] N. Booij, R. C. Ris, and L. H. Holthuijsen, “A third-generation wave model for coastal regions. I – Model description and validation,” Journal of Geophysical Research 104.C4, pp. 7649-7666, 1999.
- [27] R. C. Ris, L. H. Holthuijsen, and N. Booij, “A third-generationwave model for coastal regions: 2. verification,” Journal of Geophysical Research 104.C4, pp. 7667-7681, 1999.
- [28] M. Ziljema, “Computation of wind-wave spectra in coastal waters with SWAN on unstructured Grids,” Coastal Engineering, Vol.57, pp. 267-277, 2010.
- [29] J. C. Dietrich, S. Tanaka, J. J. Westerink, C. Dawson, R. A. Luettich, M. Zijlema, L. H. Holthuijsen, J. M. Smith, L. G. Westerink, and H. J. Westerink, “Performance of the Unstructured-Mesh, SWAN+ADCIRC Model in Computing Hurricane Waves and Surge,” Journal of Scientific Computing, Vol.52, pp. 468-497, 2012.
- [30] J. C. Dietrich, S. Bunya, J. J.Westerink, B. A. Ebersole, J.M. Smith, J. H. Atkinson, R. Jensen, D. T. Resio, R. A. Luettich, C. Dawson, V. J. Cardone, A. T. Cox, M. D. Powell, H. J. Westerink, and H. J. Roberts, “A high resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part II: Synoptic description and analyses of hurricanes Katrina and Rita,” Monthly Weather Review, Vol.138, pp. 378-404, 2010.
- [31] C. Kafali, “System performance under multihazard environment,” Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 2008.
- [32] M. McCullough and A. Kareem, “Performance-based engineering in multi-hazard coastal environments,” 13th International Conference on Wind Engineering (ICWE), Amsterdam, The Netherlands, 2011.
- [33] M. Tang, E. Castro, F. Pedroni, A. Brzozowski, and M. Ettouney, “Performance-Based Design with Application to Seismic Hazard,” Structure Magazine, 2008.
- [34] M. Shinozuka, M. Q. Feng, J. Lee, and T. Naganuma, “Statistical Analysis of Fragility Curves,” Journal of Engineering Mechanics, ASCE 126, pp. 1224-1231, 2000.
- [35] Y. -K. Wen, and B. R. Ellingwood, “The Role of Fragility Assessment in Consequence-Based Engineering,” Earthquake Spectra, Vol.21, pp. 861-877, 2005.
- [36] M. McCullough and A. Kareem, “Global warming and hurricane intensity and frequency: The debate continues,” 12th International Conference on Wind Engineering, Cairns, Australia, 2007.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.