Paper:
Seismic Performance of Degraded Shear Walls for Long-Term Compliance Periods
Luis Ibarra*, Biswajit Dasgupta**, and Kuang-Tsan Chiang**
*University of Utah, Department of Civil Engineering, 110 Central Campus Drive. Salt Lake City, UT 84112, USA
**Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute®, 6220 Culebra Road, San Antonio, TX 78238, USA
- [1] R. P. Kennedy and M. K. Ravindra, “Seismic Fragilities for Nuclear Power Plant Risk Studies,” Nuclear Engineering and Design, Vol.79. pp. 47-68, 1984.
- [2] J. I. Braverman, C. A. Miller, B. R. Ellingwood, D. J. Naus, C. H. Hofmayer, S. Shteyngart, and P. Bezler, NUREG/CR-6715, “Probability-Based Evaluation of Degraded Reinforced Concrete Components in Nuclear Power Plants,” Washington, DC: U.S. Nuclear Regulatory Commission, April 2001.
- [3] Y. Mori and B. R. Ellingwood, “Reliability-Based Service-Life Assessment of Aging Concrete Structures,” Journal of Structural Engineering, Vol.119, No.5. pp. 1600-1621, 1993.
- [4] K. Bhargava, Y. Mori, and A. K. Ghosh, “Time-dependent reliability of corrosion-affected RC beams – Parts 1-3,” Nuclear Engineering and Design, Vol.241, Issue 5, pp. 1371-1402, May 2011.
- [5] Computers and Structures, Inc., “Structural Analysis Program,” SAP2000, Version 14, Berkeley, California: Computer and Structures, Inc., 2009.
- [6] F. Barda, J. M. Hanson, and W. G. Corley, “Shear Strength of Low-Rise Walls With Boundary Elements. Reinforced Concrete Structures in Seismic Zones SP-53,” Detroit, Michigan: American Concrete Institute, pp. 149-202, 1977.
- [7] J. B. Mander, M. J. N. Priestley, and R. Park, “Theoretical Stress-Strain Model For Confined Concrete,” Vol.114, No.8, pp. 1804-1826, 1988.
- [8] American Society of Civil Engineers, “Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities,” ASCE/SEI 43-05, Reston, Virginia: American Society of Civil Engineers, 2005.
- [9] K. Chiang, L. Ibarra, and B. Dasgupta, “Effect of Temperature on the Compressive Strength of Concrete,” Transactions of SMiRT 21, Paper ID# 546, New Delhi, India, 2011.
- [10] G. D.Wyss and K. H. Jorgensen, “A User’s Guide to LHS: Sandia’s Latin Hypercube Sampling Software,” SAND98-0210, UC-505, Albuquerque, New Mexico: Sandia National Laboratories, February 1998.
- [11] L. F. Ibarra and H. Krawinkler, “Global Collapse of Frame Structures Under Seismic Excitations,” Pacific Earthquake Engineering Research (PEER), Report 2005/06, Berkeley, California: PEER Center, University of California, Berkeley, September 2005.
- [12] F. Jalayer, “Direct Probabilistic Seismic Analysis: Implementing Non-Linear Dynamic Assessment,” Ph.D. Dissertation, Department of Civil Engineering, Stanford University, California, 2003.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.