single-dr.php

JDR Vol.3 No.1 pp. 69-77
(2008)
doi: 10.20965/jdr.2008.p0069

Review:

Convective Activity and Moisture Variation During Field Experiment MISMO in the Equatorial Indian Ocean

Kunio Yoneyama* and Yukari N. Takayabu**,*

*Institute of Observational Research for Global Change (IORGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan

**Center for Climate System Research, the University of Tokyo, Kashiwa, Japan

Received:
November 11, 2007
Accepted:
January 16, 2008
Published:
February 1, 2008
Keywords:
Madden-Julian Oscillation, MISMO, research vessel Mirai, Indian Ocean
Abstract
The field experiment Mirai Indian Ocean cruise for the Study of the MJO-convection Onset (MISMO) took place in the central equatorial Indian Ocean from October to December 2006 on the research vessel Mirai. During MISMO, intensive Doppler radar, radiosonde, and other observations were conducted to collect atmospheric and oceanic features when convection associated with the intraseasonal variability was initiated. The Mirai was stationed at 2S-2N and 79E-82E from October 24 to November 25. Satellite-based cloud data analysis was used to detect convectively active intraseasonal variations in the latter half of observation, although it was weak and its eastward-propagating signal dissipated before arriving on the maritime continent. We examine the features of convective activity and related moisture variation during this stationary observation period, focusing on difference in features between convectively inactive and active periods. We confirmed that stratiform clouds played a key role in regulating moisture distribution features in the convectively active intraseasonal period.
Cite this article as:
K. Yoneyama and Y. Takayabu, “Convective Activity and Moisture Variation During Field Experiment MISMO in the Equatorial Indian Ocean,” J. Disaster Res., Vol.3 No.1, pp. 69-77, 2008.
Data files:
References
  1. [1] I. Blade and D. L. Hartmann, “Tropical intraseasonal oscillations in a simple nonlinear model,” J. Atmos. Sci., 50, pp. 2922-2939, 1993.
  2. [2] H. H. Hendon and B. Liebmann, “A composite study of onset of the Australian summer monsoon,” J. Atmos. Sci., 47, pp. 2227-2240, 1990.
  3. [3] H.-H. Hsu, B. J. Hoskins, and F.-F. Jin, “The 1985/86 intraseasonal oscillation and the role of the extratropics,” J. Atmos. Sci., 47, pp. 823-839, 1990.
  4. [4] Q. Hu and D. A. Randall, “Low-frequency oscillations in radiative-convective systems,” J. Atmos. Sci., 51, pp. 1089-1099, 1994.
  5. [5] R. H. Johnson, T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, “Trimodal characteristics of tropical convection,” J. Climate, 12, pp. 2397-2418, 1999.
  6. [6] S. Kemball-Cook and B. C. Weare, “The onset of convection in the Madden-Julian oscillation,” J. Climate, 14, pp. 780-793, 2001.
  7. [7] G. N. Kiladis, K. H. Straub, and P. Haertel, “Zonal and vertical structure of the Madden-Julian oscillation,” J. Atmos. Sci., 62, pp. 2790-2809, 2005.
  8. [8] T. Knutson, K. Weickmann, and T. Kutzbach, “Global-scale intraseasonal oscillations of outgoing longwave radiation and 250-mb zonal wind during northern hemisphere summer,” Mon. Wea. Rev., 114, pp. 605-623, 1986.
  9. [9] H. Kubota, R. Shirooka, T. Ushiyama, J. Cheng, T. Chuda, K. Takeuchi, K. Yoneyama, and M. Katsumata, “Observations of the structure of deep convections and their environment during the active phase of an Madden-Julian oscillation event over the equatorial western Pacific,” J. Meteor. Soc. Japan, 84, pp. 115-128, 2006.
  10. [10] J. Lin, B. Mapes, M. Zhang, and M. Newman, “Stratiform precipitation, vertical heating profiles, and the Madden-Julian oscillation,” J. Atmos. Sci., 61, pp. 296-309, 2004.
  11. [11] J.-L. Lin, G. N. Kiladis, B. E. Mapes, K. M. Weickmann, K. R. Sperber, W. Lin, M. C. Wheeler, S. D. Schubert, A. Del Genio, L. J. Donner, S. Emori, J.-F. Gueremy, F. Hourdin, P. J. Rasch, E. Roeckner, and J. F. Scinocca, “Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals,” J. Climate, 19, pp. 2665-2690, 2006.
  12. [12] R. A. Madden and P. R. Julian, “Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific,” J. Atmos. Sci., 28, pp. 702-708, 1971.
  13. [13] R. A. Madden and P. R. Julian, “Description of global-scale circulation cells in the Tropics with a 40-50 day period,” J. Atmos. Sci., 29, pp. 1109-1123, 1972.
  14. [14] E. D. Maloney and D. L. Hartmann, “The Madden-Julian oscillation, barotropic dynamics, and north Pacific tropical cyclone formation. Part I: Observations,” J. Atmos. Sci., 58, pp. 2545-2558, 2001.
  15. [15] M. J. McPhaden, “Genesis and evolution of the 1997-98 El Nino,” Science, 283, pp. 950-954, 1999.
  16. [16] D. S. Myers and D. E. Waliser, “Three-dimensional water vapor and cloud variations associated with the Madden-Julian Oscillation during northern hemisphere winter,” J. Climate, 16, pp. 929-950, 2003.
  17. [17] T. Nakazawa, “Tropical super clusters within intraseasonal variations over the western Pacific,” J. Meteor. Soc. Japan, 66, pp. 823-839, 1988.
  18. [18] T. M. Rickenbach and S. A. Rutledge, “Convection in TOGA COARE: Horizontal scale, morphology, and rainfall production,” J. Atmos. Sci., 55, pp. 2715-2729, 1998.
  19. [19] K. R. Sperber, “Propagation and the vertical structure of the Madden-Julian Oscillation,” Mon. Wea. Rev., 131, pp. 3018-3037, 2003.
  20. [20] M. Steiner, R. A. Houze, Jr., and S. E. Yuter, “Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data,” J. Appl. Meteor., 34, pp. 1978-2007, 1995.
  21. [21] H. Vomel, H. Selkirk, L. Miloshevich, J. Valverde-Canossa, J. Valdes, E. Kyro, R. Kivi, W. Stolz, G. Peng, and J. A. Diaz, “Radiation dry bias of the Vaisala RS92 humidity sensor,” J. Atmos. Oceanic Technol., 24, pp. 953-963, 2007.
  22. [22] M. Wheeler and G. N. Kiladis, “Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber – frequency domain,” J. Atmos. Sci., 56, pp. 374-399, 1999.
  23. [23] M. Wheeler and K. M. Weickmann, “Real-time monitoring and prediction of modes of coherent synoptic to intraseasonal tropical variability,” Mon. Wea. Rev., 129, pp. 2677-2694, 2001.
  24. [24] T. Yasunari, “Cloudiness fluctuations associated with the northern hemisphere summer monsoon,” J. Meteor. Soc. Japan, 57, pp. 227-242, 1979.
  25. [25] K. Yoneyama, Y. Masumoto, Y. Kuroda, M. Katsumata, K. Mizuno, Y. N. Takayabu, M. Yoshizaki, A. Shareef, Y. Fujiyoshi, M. J. McPhaden, V. S. N. Murty, R. Shirooka, K. Yasunaga, H. Yamada, N. Sato, T. Ushiyama, Q. Moteki, A. Seiki, M. Fujita, K. Ando, H. Hase, I. Ueki, T. Horii, C. Yokoyama, and T. Miyakawa, “MISMO field experiment in the equatorial Indian Ocean,” Bull. Amer. Meteor. Soc., 2008a (in revision).
  26. [26] K. Yoneyama, M. Fujita, N. Sato, M. Fujiwara, Y. Inai, and F. Hasebe, “Correction for radiation dry bias found in RS92 radiosonde data during the MISMO field experiment,” SOLA, 4, pp. 13-16, 2008b.
  27. [27] C. Zhang, “Madden-Julian oscillation,” Rev. Geophysics, 43, RG2003, doi:10.1029/2004RG000158, 2005.
  28. [28] P. Zuidema, “The 600-800-mb minimum in tropical cloudiness observed during TOGA COARE,” J. Atmos. Sci., 55, pp. 2220-2228, 1998.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Nov. 01, 2024