JDR Vol.3 No.1 pp. 78-88
doi: 10.20965/jdr.2008.p0078


HARIMAU Radar-Profiler Network over the Indonesian Maritime Continent: A GEOSS Early Achievement for Hydrological Cycle and Disaster Prevention

Manabu D. Yamanaka*1, Hiroyuki Hashiguchi*2, Shuichi Mori*1,
Pei-Ming Wu*1, Fadli Syamsudin*3, Timbul Manik*4,
Hamada Jun-Ichi*1, Masayuki K. Yamamoto*2 ,
Masayuki Kawashima*5, Yasushi Fujiyoshi*5, Namiko Sakurai*1,
Masayuki Ohi*5, Ryuichi Shirooka*1, Masaki Katsumata*1,
Yoshiaki Shibagaki*6, Toyoshi Shimomai*7, Erlansyah*4,
Wawan Setiawan*4, Bambang Tejasukmana*4,
Yusuf S. Djajadihardja*3, and Jana T. Anggadiredja*3

*1Institute of Observational Research for Global Change (IORGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Japan

*2Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Japan

*3Agency for the Assessment and Application of Technology (BPPT), Indonasia *4 Indonesian National Institute of Aeronautics and Space (LAPAN), Indonasia *5 Institute of Low Temperature Science (ILTS), Hokkaido University, Japan *6 Osaka Electro-Communication University, Japan *7 Shimane University, Japan

January 28, 2008
March 9, 2008
February 1, 2008
meteorological disaster, maritime continent, radar network, wind profiler, GEOSS
The Hydrometeorological ARray for Isv-Monsoon AUtomonitoring (HARIMAU), a 5-year project under the Japan EOS Promotion Program (JEPP) contributing to the Global Earth Observation System of Systems (GEOSS), has begun in 2005 to set up a radar-profiler network for observing the world's most active convective activities over the Indonesian Maritime Continent (IMC). Rainfall and wind distributions are displayed in nearly real time on the internet. Both scientific understanding and practical concepts on intraseasonal variations (ISVs) interacting with larger (seasonal and interannual) and smaller (diurnal or local) scale phenomena will be established. These are expected to contribute greatly and directly to climatic disaster prevention over the IMC and to global climate change assessment through studies on the global effects of the IMC-induced variations such as El Nino, and through construction of the first climatic database over the IMC.
Cite this article as:
M. Yamanaka, H. Hashiguchi, S. Mori, P. Wu, F. Syamsudin, T. Manik, H. Jun-Ichi, M. Yamamoto, M. Kawashima, Y. Fujiyoshi, N. Sakurai, M. Ohi, R. Shirooka, M. Katsumata, Y. Shibagaki, T. Shimomai, Erlansyah, W. Setiawan, B. Tejasukmana, Y. Djajadihardja, and J. Anggadiredja, “HARIMAU Radar-Profiler Network over the Indonesian Maritime Continent: A GEOSS Early Achievement for Hydrological Cycle and Disaster Prevention,” J. Disaster Res., Vol.3 No.1, pp. 78-88, 2008.
Data files:
  1. [1] C. S. Ramage, “Role of a tropical “maritime continent, in the atmospheric circulation,” Mon. Wea. Rev., 96, pp. 365-370, 1968.
  2. [2] Hamada J.-I., M. D. Yamanaka, J. Matsumoto, S. Fukao, P. A. Winarso, and T. Sribimawati, “Spatial and temporal variations of the rainy season over Indonesia and their link to ENSO,” J. Meteor. Soc. Japan, 80, pp. 285-310, 2002.
  3. [3] N. Okamoto, M. D. Yamanaka, S.-Y. Ogino, H. Hashiguchi, N. Nishi, T. Sribimawati, and A. Numaguti, “Seasonal variation of tropospheric wind over Indonesia: Comparison between collected operational rawinsonde data and NCEP reanalysis for 1992-99,” J. Meteor. Soc. Japan, 81, pp. 829-850, 2003.
  4. [4] N. O. Hashiguchi, M. D. Yamanaka, S.-Y. Ogino, M. Shiotani, and T. Sribimawati, “Seasonal and interannual variations of temperature in tropical tropopause layer (TTL) over Indonesia based on operational rawinsonde data during 1992-1999,” J. Geophys. Res., 111, D15110, doi:10.1029/2005JD006501, 2006.
  5. [5] N. H. Saji, N. Goswami, P. N. Vinayachandran, and T. Yamagata, “A dipole mode in the tropical Indian Ocean,” Nature, 401, pp. 360-363, 1999.
  6. [6] H. Hashiguchi, S. Fukao, T. Tsuda, M. D. Yamanaka, D. L. Tobing, T. Sribimawati, S. W. B. Harijono, and H. Wiryosumarto, “Observations of the planetary boundary layer over equatorial Indonesia with an L-band clear-air Doppler radar: Initial results,” Radio Sci., 30, pp. 1043-1054, 1995.
  7. [7] H. Hashiguchi, S. Fukao, T. Tsuda, M. D. Yamanaka, S. W. B. Harijono, and H. Wiryosumarto, “An overview of the planetary boundary layer observations over equatorial Indonesia with an L-band clear-air Doppler radar,” Contr. Atmos. Phys., 69, pp. 13-25, 1996.
  8. [8] H. Hashiguchi, S. Fukao, M. D. Yamanaka, and T. Tsuda, “Frequency spectra of wind velocity fluctuations between 1 hour and 1 month in the atmospheric boundary layer over equatorial Indonesia.” J. Geomag. Geoelectr., 49, S187-S195, 1997.
  9. [9] T. W. Hadi, T. Tsuda, H. Hashiguchi, and S. Fukao, “Tropical sea-breeze circulation and related atmospheric phenomena observed with L-band boundary layer radar in Indonesia,” J. Meteor. Soc. Japan, 78, pp. 123-140, 2000.
  10. [10] F. Renggono, H. Hashiguchi, S. Fukao, M. D. Yamanaka, S.-Y. Ogino, N. Okamoto, F. Murata, S. W. B. Harijono, M. Kudsy, M. Kartasasmita, and G. Ibrahim, “Precipitating clouds observed by 1.3-GHz L-band boundary layer radars in equatorial Indonesia,” Ann. Geophys., 19, pp. 889-897, 2001.
  11. [11] P.-M. Wu, Hamada J.-I., S. Mori, Y. I. Tauhid, M. D. Yamanaka, and F. Kimura, “Diurnal variation of precipitable water over a mountaneous area in Sumatera Island,” J. Appl. Meteor., 42, pp. 1107-1115, 2003.
  12. [12] S. Mori, Hamada J.-I., Y. I. Tauhid, M. D. Yamanaka, N. Okamoto, F. Murata, N. Sakurai, and T. Sribimawati, “Diurnal rainfall peak migrations around Sumatera Island, Indonesian maritime continent observed by TRMM satellite and intensive rawinsonde soundings,” Mon. Wea. Rev., 132, pp. 2021-2039, 2004.
  13. [13] N. Sakurai, F. Murata, M. D. Yamanaka, H. Hashiguchi, S. Mori, J.-I. Hamada, Y.-I. Tauhid, T. Sribimawati, and B. Suhardi, “Diurnal cycle of migration of convective cloud systems over Sumatera Island,” J. Meteor. Soc. Japan, 83, pp. 835-850, 2005.
  14. [14] R. Araki, M. D. Yamanaka, F. Murata, H. Hashiguchi, Y. Oku, T. Sribimawati, M. Kudsy, and F. Renggono, “Seasonal and interannual variations of diurnal cycles of local circulation and cloud activity observed at Serpong, West Jawa, Indonesia,” J. Meteor. Soc. Japan, 84A, pp. 171-194, 2006.
  15. [15] H. Hashiguchi, S. Fukao, M. D. Yamanaka, T. Tsuda, S. W. B. Harijono, and H. Wiryosumarto, “Boundary layer radar observations of the passage of the convection center over Serpong, Indonesia (6S, 107E) during the TOGA COARE intensive observation period,” J. Meteor. Soc. Japan, 73, pp. 535-548, 1995.
  16. [16] I. Widiyatmi, M. D. Yamanaka, H. Hashiguchi, S. Fukao, T. Tsuda, S. Ogino, S. W. B. Harijono, and H. Wiryosumarto, “Quasi 4 day mode observed by a boundary layer radar at Serpong (6S, 107E), Indonesia,” J. Meteor. Soc. Japan, 77, pp. 1177-1184, 1999.
  17. [17] I. Widiyatmi, H. Hashiguchi, S. Fukao, M. D. Yamanaka, S. Ogino, K. S. Gage, S. W. B. Harijono, S. Diharto, and H. Djojodihardjo, “Examination of 3-6 day disturbances over equatorial Indonesia based on boundary layer radar observations during 1996-1999 at Bukittinggi, Serpong, and Biak,” J. Meteor. Soc. Japan, 79, pp. 317-331, 2001.
  18. [18] F. Murata, M. D. Yamanaka, M. Fujiwara, S.-Y. Ogino, H. Hashiguchi, S. Fukao, M. Kudsy, T. Sribimawati, S. W. B. Harijono, and E. Kelana, “Relationship between wind and precipitation observed with a UHF radar, GPS rawinsonde and surface meteorological instruments at Kototabang, West Sumatera during September-October 1998,” J. Meteor. Soc. Japan, 80, pp. 347-360, 2002.
  19. [19] Y. Shibagaki, T. Shimomai, T. Kozu, S. Mori, Y. Fujiyoshi, H. Hashiguchi, M. K. Yamamoto, S. Fukao, and M. D. Yamanaka, “Multi-scale convective systems associated with an intraseasonal oscillation over the Indonesian maritime continent,” Mon. Wea. Rev., 134, pp. 1682-1696, 2006.
  20. [20] F. Murata, M. D. Yamanaka, H. Hashiguchi, S. Mori, M. Kudsy, T. Sribimawati, B. Suhardi, and Emrizal, “Dry intrusions following eastward-propagating synoptic-scale cloud systems over Sumatera Island,” J. Meteor. Soc. Japan, 84, pp. 277-294, 2006.
  21. [21] M. Rampiro and S. Self, “Climate-volcanism feedback and the Toba eruption of ∼74000 years ago,” Quart. Res., 40, pp. 269-280, 1993.
  22. [22] C. Oppenheimer, “Limited global change due to the largest known Quaternary eruption, Toba ≈74 kyr BP?,” Quart. Sci. Rev., 21, pp. 1593-1609, 2002.
  23. [23] M. T. Jones, R. S. J. Sparks, and P. J. Valdes, “The climatic impact of supervolcanic ash blankets,” Clim. Dyn., 29, pp. 553-564, 2007.
  24. [24] S. Mori, J.-I. Hamada, M. D. Yamanaka, Y.-M. Kodama, M. Kawashima, T. Shimomai, Y. Shibagaki, H. Hashiguchi, and T. Sribimawati, “Vertical wind characteristics in precipitating cloud systems over west Sumatera, Indonesia, observed with Equatorial Atmosphere Radar: Case study on 23-24 April 2004 during the first CPEA Campaign Period,” J. Meteor. Soc. Japan, 84A, pp. 113-131, 2006.
  25. [25] M. Kawashima, Y. Fujiyoshi, M. Ohi, T. Honda, T. Kozu, T. Shimomai, and H. Hashiguchi, “Overview of Doppler radar observations of precipitating cloud systems in Sumatera island during the first CPEA campaign,” J. Meteor. Soc. Japan, 84A, pp. 33-56, 2006.
  26. [26] E. Aldrian and R. D. Susanto, “Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature,” Int. J. Climatol., 23, pp. 1435-1452, 2003.
  27. [27] P.-M. Wu, M. Hara, H. Fudeyasu, M. D. Yamanaka, J. Matsumoto, F. Syamsudin, R. Sulistyowati, and Y. S. Djajadihardja, “The impact of trans-equatorial monsoon flow on the formation of repeated torrential rains over Java Island,” SOLA, 3, pp. 93-96, 2007.
  28. [28] B. B. Balsley, D. A. Carter, A. C. Riddle, W. L. Ecklund, and K. S. Gage, “On the potential of VHF wind profilers for studying convective processes in the tropics,” Bull. Amer. Meteor. Soc., 72, pp. 1355-1360, 1991.
  29. [29] S. Fukao, H. Hashiguchi, M. Yamamoto, T. Tsuda, T. Nakamura, M. K. Yamamoto, T. Sato, M. Hagio, and Y. Yabugaki, “Equatorial Atmosphere Radar (EAR): System description and first results,” Radio Sci., 38, 1053, doi:10.1029/2002RS002767, 2003.
  30. [30] GEO (Group on Earth Observations), “The First 100 Steps to GEOSS: Annex of Early Achievements to the Report on Progress 2007, Cape Town Ministerial Summit: Earth Observations for Sustainable Growth and Development,” 30 November 2007, GEO Secretariat, 206pp., 2007.
  31. [31] H. Hashiguchi, M. D. Yamanaka, S. Mori, K. Imai, F. Syamsudin, T. Manik, Elransyah, W. Setiawan, Y. D. Djajadihardja, J. T. Anggadiredja, and B. Tejasukmana, “HARIMAU radar-profiler network over Indonesian maritime continent and development of Luneberg lens wind profiler radars,” IEEE Systems J., GEOSS Special Issue, 2007 (submitted).
  32. [32]
  33. [33] M. Fujiwara, Y. Tomikawa, N. Komala, S. Saraspriya, T. Manik, A. Suripto, K. Kita, Y. Kondo, S. Kawakami, T. Ogawa, E. Kelana, B. Suhardi, T. Sribimawati, M. Kudsy, S. W. B. Harijono, and M. D. Yamanaka, “Ozonesonde soundings in the Indonesian maritime continent in September-October 1998 and in August-September 1999,” Atmos. Environ., 37, pp. 353-362, 2003.
  34. [34] S. Fukao, “Coupling Processes in the Equatorial Atmosphere (CPEA): A project overview,” J. Meteorol. Soc. Japan, 84A, pp. 1-18, 2006.
  35. [35] H. Hashiguchi, S. Fukao, Y. Moritani, T. Wakayama, and S. Watanabe, “A lower troposphere radar: 1.3-GHz active phased-array type wind profiler with RASS,” J. Meteor. Soc. Japan, 82, pp. 915-931, 2004.
  36. [36] M. Ishihara, Y. Kato, T Abo, K. Kobayashi, and Y. Izumikawa, “Characteristics and performance of the operational wind profiler network of the Japan Meteorological Agency,” J. Meteor. Soc. Japan, 84, pp. 1085-1096, 2006.
  37. [37] T. Tsuda, S. Fukao, M. Yamamoto, T. Nakamura, M. D. Yamanaka, T. Adachi, H. Hashiguchi, N. Fujioka, M. Tsutsumi, S. Kato, S. W. B. Harijono, T. Sribimawati, B. P. Sitorus, R. B. Yahya, M. Karmini, F. Renggono, B. L. Parapat, W. Djojonegoro, P. Mardio, N. Adikusumah, H. T. Endi, and H. Wiryosumarto, “A preliminary report on observations of equatorial atmosphere dynamics in Indonesia with radars and radiosondes,” J. Meteor. Soc. Japan, 73, pp. 393-406, 1995.
  38. [38] and
  39. [39] G. P. Konnen, P. D. Jones, M. H. Kaltofen, and R. J. Allan, “Pre-1866 Extensions of the southern oscillation index using early Indonesian and Tahitian meteorological readings,” J. Climate, 11, pp. 2325-2339, 1998.
  40. [40] W. van Bemmelen, “Land- und seebrise in Batavia,” Beitr. Phys. Frei. Atmos., 10, pp. 169-177, 1922.
  41. [41] J. Bartels, “Gezeitenschwingungen der Atmosphare,” Handbuch der Experimentalphysik, 25, pp. 163-210, 1928.
  42. [42] R. A. Madden and P. R. Julian, “Observations of the 40-50-day tropical oscillation: A review,” Mon. Wea. Rev., 122, pp. 814-837, 1994.
  43. [43]
  44. [44] T. Nakazawa, “Tropical super clusters within intraseasonal variations over the western Pacific,” J. Meteor. Soc. Japan, 66, pp. 823-839, 1988.
  45. [45] Ts. Nitta, T. Mizuno, and K. Takahashi, “Multi-scale convective systems during the initial phase of the 1986/87 El Nino,” J. Meteor. Soc. Japan, 70, pp. 448-466, 1992.
  46. [46] H. H. Hendon and B. Liebmann, “A composite study of onset of the Australian summer monsoon,” J. Atmos. Sci., 47, pp. 2227-2240, 1990.
  47. [47] K. M. Lau and P. H. Chan, “Intraseasonal and interannual variations of tropical convection: A possible link between the 40-50 day oscillation and ENSO?,” J. Atmos. Sci., 45, pp. 506-521, 1988.
  48. [48] T. Matsuno, “Quasi-geostrophic motions in equatorial area,” J. Meteor. Soc. Japan, 60, pp. 215-226, 1966.
  49. [49] A. E. Gill, “Some simple solutions for heat-induced tropical circulation,” Quart. J. Roy. Meteor. Soc., 106, pp. 447-463, 1980.
  50. [50] Y.-Y. Hayashi and A. Sumi, “The 30-40 day oscillations simulated in an “aqua planet” model,” J. Meteor. Soc. Japan, 64, pp. 451-467, 1986.
  51. [51] K. Yoneyama and Y. N. Takayabu, “Convective activity and moisture variation during field experiment MISMO in the equatorial Indian Ocean,” J. Dis. Res., 2008, this issue.
  52. [52] J. Loebis, private communication, 2006.
  53. [53]
  54. [54] K. Masuda and H. Kamimera, private communication, 2008.
    (Also see their website: )

Creative Commons License  This article is published under a Creative Commons Attribution 4.0 International License.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 03, 2024