Paper:
Families of Triangular Norm-Based Kernel Functions and Their Application to Kernel k-Means
Kazushi Okamoto
Department of Informatics, Graduate School of Informatics and Engineering, The University of Electro-Communications
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
- [1] Y. Rubner, J. Puzicha, C. Tomasi, and J. M. Buhmann, “Empirical evaluation of dissimilarity measures for color and texture,” Computer Vision and Image Understanding, Vol.84, No.1, pp. 25-43, 2001.
- [2] A. Barla, F. Odone, and A. Verri, “Histogram intersection kernel for image classification,” Proc. of 2003 Int. Conf. on Image Processing, Vol.2, No.III-513-16, 2003.
- [3] A. Vedaldi and A. Zisserman, “Efficient additive kernels via explicit feature maps,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.34, No.3, pp. 480-492, 2012.
- [4] M. Mizumoto, “Pictorial representations of fuzzy connectives, part I: cases of t-norms, t-conorms and averaging operators,” Fuzzy Sets and Systems, Vol.31, No.2, pp. 217-242, 1989.
- [5] E. P. Klement, R. Mesiar, and E. Pap, “Triangular norms. position paper I: basic analytical and algebraic properties,” Fuzzy Sets and Systems, Vol.143, No.1, pp. 5-26, 2004.
- [6] C. Alsina and M. S. Tomas, “On positive semidefinite strict t-norms,” General Inequalities, Vol.6, pp. 215-225, 1992.
- [7] L. Fu and E. Medico, “FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data,” BMC Bioinformatics, Vol.8, No.1, pp. 1-15, 2007.
- [8] A. K. Jain and M. H. C. Law, “Data clustering: a user’s dilemma,” Lecture Notes in Computer Science, Vol.3776, pp. 1-10, 2005.
- [9] H. Chang and D. Y. Yeung, “Robust path-based spectral clustering,” Pattern Recognition, Vol.41, No.1, pp. 191-203, 2008.
- [10] L. Hubert and P. Arabie, “Comparing partitions,” J. of Classification, Vol.2, No.1, pp. 193-218, 1985.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.