Paper:
Hybrid Voice Controller for Intelligent Wheelchair and Rehabilitation Robot Using Voice Recognition and Embedded Technologies
Mohammed Faeik Ruzaij*,**, Sebastian Neubert*, Norbert Stoll***, and Kerstin Thurow*
*Center for Life Science Automation (celisca), University of Rostock
Rostock 18119, Germany
**Technical Institute of Babylon, Al-Furat Al-Awsat Technical University (ATU)
Najaf, Iraq
***Institute of Automation (IAT), University of Rostock
Rostock 18119, Germany
- [1] X. Lv, M. Zhang, and H. Li, “Robot Control Based on Voice Command,” Proc. IEEE Int. Conf. on Automation and Logistics, Qingdao, pp. 2490-2494, September 2008.
- [2] M. T. Qadri and S. A. Ahmed, “Voice Controlled Wheelchair Using DSK TMS320C6711,” Proc. of Int. Conf. on Signal Acquisition and Processing 2009, Kuala Lumpur, pp. 217-221, 2009.
- [3] U. Qidwai and F. Ibrahim, “Arabic Speech-Controlled Wheelchair: a Fuzzy Scenario,” Proc. of 10th Int. Conf. on Information Science, Signal Processing and their Applications, Kuala Lumpur, pp. 153-156, 2010.
- [4] Ronald H. Rockland Reisman S., “Voice Activated Wheelchair Controller,” Proc. IEEE 24th Annual Northeast Bioengineering Conf., Hershey, PA, pp. 128-129, 1998.
- [5] M. F. Ruzaij and S. Poonguzhali, “Design and Implementation of Low Cost Intelligent Wheelchair,” Proc. 2nd Int. Conf. on Recent Trends in Information Technology, Chennai, pp. 468-471, 19-21 April, 2012.
- [6] C. Aruna, A. Dhivya Parameswari, M. Malini, and G. Gopu, “Voice Recognition and Touch Screen Control Based Wheelchair for Paraplegic Persons,” Proc. Green Computing, Communication and Electrical Engineering, Coimbatore, pp. 1-5, 2014.
- [7] A. Murai, M. Mizuguchi, T. Saitoh, T. Osaki, and R. Konishi, “Elevator Available Voice Activated Wheelchair,” Proc. 18th IEEE Int. Symp. on Robot and Human Interactive Communication, Toyama, Japan, pp. 730-735, Sept. 27-Oct. 2, 2009.
- [8] M. Nishimori, T. Saitoh, and R. Konishi, “Voice Controlled Intelligent Wheelchair,” Proc. SICE Annual Conf. 2007, Kagawa University, Japan, pp. 336-340, Sept. 17-20, 2007.
- [9] K. Tanaka, K. Matsunaga, and H. O. Wang, “Electroencephalogram-Based Control of an Electric Wheelchair,” IEEE Trans. on Robotics, Vol.21, No.4, August 2005.
- [10] I. Iturrate, J. Antelis, and J. Minguez, “Synchronous EEG Brain-Actuated Wheelchair with Automated Navigation,” Proc. 2009 IEEE Int. Conf. on Robotics and Automation, Int. Conf. Center, Kobe, Japan, May Vol.12-17, pp. 2318-2327, 2009.
- [11] I. Moon, M. Lee, J. Ryu, and M. Mun, “Intelligent Robotic Wheelchair with EMG-, Gesture-, and Voice-based Interfaces,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Las Vegas, Nevada, Vol.4, pp. 3453-3458, 2003.
- [12] S. Ohishi and T. Kondo, “A Proposal of EMG-based Wheelchair for Preventing Disuse of Lower Motor Function,” Proc. Annual Conf. of Society of Instrument and Control Engineers (SICE), Akita University, Akita, Japan, pp. 236-239, August 20-23, 2012.
- [13] B. Champaty, J. Jose, H. Pal, and A. Thirugnanam, “Development of EOG Based Human Machine Interface control System for Motorized Wheelchair,” Proc. Int. Conf. on Magnetics, Machines & Drives (AICERA-2014 iCMMD), Kottayam, Vol.24-26, pp. 1-7, July 2014.
- [14] O. Partaatmadja, B. Benhabib, A. Sun, and A. A. Goldenberg, “An Electrooptical Orientation Sensor for Robotics,” IEEE Trans. On Robotics And Automation, Vol.8, No.1, pp. 111-119, February 1992.
- [15] Z. Aiyun, Y. Kui, Y. Zhigang, and Z. Haibing, “Research and Application of a Robot Orientation Sensor,” Proc. Int. Conf. on Robotics Intelligent Systems and Signal Processing, Changsha, China, pp. 1069-1074, October 2003.
- [16] S. Manogna, S. Vaishnavi, and B. Geethanjali, “Head Movement Based Assist System For Physically Challenged,” Proc. 4th Int. Conf. on Bioinformatics and Biomedical Engineering (iCBBE), Chengdu, China, pp. 1-4, 2010.
- [17] EFM32GG990 DATASHEET, [Online]. Available: http://www.silabs.com. [Accessed December 20, 2014]
- [18] Speak Up Click User Manual Ver.101, MikroElektronika, Belgrade, Serbia, 2014.
- [19] EasyVR 2.0 User Manual R.3.6.6., TIGAL KG, Vienna, Austria, 2014.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.