Paper:
Asymmetric Prandtl-Ishlinskii Hysteresis Model for Giant Magnetostrictive Actuator
Zhuoyun Nie*, Chanjun Fu*, Ruijuan Liu**, Dongsheng Guo*, and Yijing Ma*
*School of Information Science and Engineering, National Huaqiao University
Xiamen 361021, China
**School of Applied Mathematics, Xiamen University of Technology
Xiamen 361024, China
- [1] G. Xue, Z. He, D. Li, Z. Yang, and Z. Zhao, “Analysis of the giant magnetostrictive actuator with strong bias magnetic field,” J. of Magnetism & Magnetic Materials, Vol.394, pp. 416-421, 2015.
- [2] A. G. Jennera, R. J. E. Smitha, A. J. Wilkinsonb, and R. D. Greenougha, “Actuation and transduction by giant magnetostrictive alloys,” Mechatronics, Vol.10, No.4–5, pp. 457-466, 2000.
- [3] X. B. Tan and J. S. Baras, “Modeling and control of hysteresis in magnetostrictive actuators,” Automatica, Vol.40, No.8, pp. 1469-1480, 2004.
- [4] D. Jiles and D. Atherton, “Theory of ferromagnetic hysteresis,” J. of Magnetism and Magnetic Materials, Vol.61, No.1–2, pp. 48-60, 1986.
- [5] F. T. Calklns, R. C. Smlth, A. B. Flatau, Y. J. Liu, D. Q. Wang, and F. Ding, “Energy-Based hysteresis model for magnetostrictive transducers,” IEEE. Trans. Magn, Vol.36, No.1, pp. 429-439, 2000.
- [6] J. B. Restorff, H. T. Savage, and A. E. Clark, “Preisach modeling of hysteresis in Terfenol,” J. of Applied Physics, Vol.67, No.8, pp. 5016-5018, 1990.
- [7] R. Iyer and X. B. Tan, “Control of hysteretic systems through inverse compensation,” IEEE Control Syst. Mag., Vol.29, No.1, pp. 83-99, 2009.
- [8] R. Dong and Y. Tan, “A modified Prandtl-Ishlinskii modeling method for hysteresis,” Phys. B, Vol.404, No.8-11, pp. 1336-1342, 2009.
- [9] K. Kuhnen, “Modeling,identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach,” European J. of Control, Vol.8, pp. 407-418, 2003.
- [10] M. A. Janaideh, S. Rakheja, and C. Y. Su, “A generalized Prandtl-Ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators,” J. of Smart Materials and Structures, Vol.18, No.4, pp. 1-9, 2009.
- [11] Z. Zhang, Q. W. Chen, and J. Q. Mao, “Generalized Prandtl-Ishlinskii model for Rate-dependent hysteresis:modeling and its inverse compensation for giant magnetostrictive actuator,” Proc. of the 31st Chineae Control Conf., 2012.
- [12] G. Y. Gu, L. M. Zhu, and C. Y. Su, “Modeling and compensation of asymmetric hysteresis nonlinearity for Piezoceramic Actuators with a modified Prandtl-Ishlinskii model,” IEEE Trans. on Industrial Electronics, Vol.61, No.3, 2014.
- [13] H. Jiang, H. Ji, J. Qiu, and Y. Chen, “A modified Prandtl-Ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, Vol.57, No.5, pp. 1200-1210, 2010.
- [14] Y. X. Guo, J. Q. Mao, and K. M. Zhou, “Modeling and control of giant magnetostrictive actuator based on Bouc-Wen model,” Proc. of 2011 8th Asian Control Conf., 2011.
- [15] X. S. Wang, X. J. Wang, and Y. Mao, “Hysteresis Compensation in GMA actuators using Duhem model,” Proc. of the 7th World Congress on Intelligent Control and Automation, 2008.
- [16] P. Krejci and K. Kuhnen, “Inversecontrol of systems with hysteresis and creep,” Proc. Inst. Elect. Eng. Control Theory Appl., Vol.148, pp. 185-192, 2001.
- [17] Z. Li, Y. Feng, T. Y. Chai, and C. Y. Su, “Modeling and compensation of asymmetric hysteresis nonlinearity for magnetostrictive actuators with an asymmetric shifted Prandtl-Ishlinskii model,” American Control Conf. (ACC), pp. 1658-1663, 2012.
- [18] Y. J. Liu, D. Q. Wang, and F. Ding, “Least-squares based iterative algorithms for identifying Box-Jenkins models with finite measurement data,” Digital Signal Processing, Vol.20, No.4, pp. 1458-1467, 2010.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.