Paper:
Recommender System Employing Personal-Value-Based User Model
Shunichi Hattori and Yasufumi Takama
Graduate School of System Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino, Tokyo 191-0065, Japan
- [1] P. Resnick et al., “GroupLens: an open architecture for collaborative filtering of netnews,” In Proc. of the 1994 ACM Conf. on Computer Supported Cooperative Work, pp. 175.186, 1994.
- [2] F. Pachet, P. Roy, and D. Cazaly, “A combinatorial approach to content-based music selection,” Multimedia, IEEE, Vol.7, No.1, pp. 44-51, 2000.
- [3] A. I. Schein et al., “Methods and metrics for cold-start recommendations,” In Proc. of the 25th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, pp. 253-260, 2002.
- [4] S. Hattori and Y. Takama, “Proposal of User Modeling Method Employing Reputation Analysis on User Reviews Based on Personal Values,” In the 27th Annual Conf. of Japanese Society for Artificial Intelligence, 1A3-IOS-3a-4, 2013.
- [5] S. Lee, J. Yang, and S.-Y. Park, “Discovery of hidden similarity on collaborative filtering to overcome sparsity problem,” In Discovery Science, pp. 396-402. Springer, 2004.
- [6] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predictive algorithms for collaborative filtering,” In Proc. of the 14th Conf. on Uncertainty in Artificial Intelligence, pp. 43-52, 1998.
- [7] S.-T. Park et al., “Naïve filterbots for robust cold-start recommendations,” In Proc. of the 12th ACM SIGKDD Int. Conf. on Knowledge discovery and Data Mining, pp. 699-705, 2006.
- [8] H. Yildirim and M. S. Krishnamoorthy, “A random walk method for alleviating the sparsity problem in collaborative filtering,” In Proc. of the 2008 ACM Conf. on Recommender Systems, pp. 131-138, 2008.
- [9] I. Fernández-Tobías et al., “A generic semantic-based framework for cross-domain recommendation,” In Proc. of the 2nd Int. Workshop on Information Heterogeneity and Fusion in Recommender Systems, Het-Rec 11, pp. 25-32, ACM, New York, USA, 2011.
- [10] V. C. Ostuni et al., “Top-N recommendations from implicit feedback leveraging linked opendata,” In Proc. of the 7th ACM Conf. on Recommender systems (RecSys 13), pp. 85-92, ACM, New York, USA, 2013.
- [11] M. Rokeach, “The Nature of Human Values,” Vol.70, Free Press, 1973.
- [12] D. E. Vinson, J. E. Scott, and L. M. Lamont, “The role of personal values in marketing and consumer behavior,” The J. of Marketing, pp. 44-50, 1977.
- [13] M. B. Holbrook, “Consumer value: a framework for analysis and research,” Psychology Press, 1999.
- [14] C. Jayawardhena, “Personal values’ influence on e-shopping attitude and behaviour,” Internet Research, Vol.14, No.2, pp. 127-138, 2004.
- [15] S. Hattori and Y. Takama, “Investigation About Applicability of Personal Values for Recommender System,” J. of Advanced Computational Intelligence and Intelligent Informatics, Vol.16, No.3, pp. 404-411, 2012.
- [16] G. Adomavicius and A. Tuzhilin, “Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions,” IEEE Trans. on Knowl. and Data Eng., Vol.17, No.6, pp. 734-749, June 2005.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.