Paper:
An Improvement of Fuzzy Association Rules Mining Algorithm Based on Redundancy of Rules
Toshihiko Watanabe
Department of Electrical and Electronic Engineering, Faculty of Engineering, Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8530, Japan
- [1] T. Watanabe, A. Kitamura, K. Higuchi, and H. Ikeda, “Intelligent Manufacturing Techniques for Quality and Process Design of Steel Plate,” 2003 IEEE Int. Conf. on Emerging Technologies and Factory Automation Proc., Vol.2, pp. 596-601, 2003.
- [2] R. Srikant and R. Agrawal, “Mining Generalized Association Rules,” Proc. of the 21st VLDB Conf., pp. 407-419, 1995.
- [3] R. Srikant and R. Agrawal, “Mining Quantitative Association Rules in Large Relational Tables,” Proc. of the ACM Conf. on Management of the Data, pp. 1-12, 1996.
- [4] S. Shankar and T. Purusothaman, “Utility Sentient Frequent Itemset Mining and Association Rule Mining: A Literature Survey and Comparative Study,” Int. J. of Soft Computing Applications, Issue 4, pp. 81-95, 2009.
- [5] G. Chen and Q. Wei, “Fuzzy Association Rules and the Extended Mining Algorithms,” Information Sciences, Vol.147, pp. 201-228, 2002.
- [6] H. Ishibuchi and T. Yamamoto, “Fuzzy Rule Selection by DataMining Criteria and Genetic Algorithms,” Proc. of Genetic and Evolutionary Computation Conf., pp. 399-406, 2002.
- [7] Y. Hu, R. Chen, and G. Tzeng, “Discovering Fuzzy Association Rules Using Fuzzy Partition Methods,” Knowledge-Based Systems, Vol.16, pp. 137-147, 2003.
- [8] T. Watanabe and N. Nakayama, “Fuzzy Rule Extraction Based on theMining Generalized Association Rules,” Proc. of the 2003 IEEE Int. Conf. on Syst., Man, and Cybern., pp. 2690-2695, 2003.
- [9] M. Delgado, N. Marin, D. Sanchez, and M.-A. Vila, “Fuzzy Association Rules: General Model and Applications,” IEEE Trans. on Fuzzy Systems, Vol.11, No.2, pp. 214-225, 2003.
- [10] M. Delgado, N. Marin, M. J. Martin-Bautista, D. Sanchez, and M.-A. Vila, “Mining Fuzzy Association Rules: An Overview,” Studies in Fuzziness and Soft Computing, Springer, Vol.164/2005, pp. 351-373, 2006.
- [11] H. Verlinde, M. De Cock, and R. Boute, “Fuzzy Versus Quantitative Association Rules: A Fair Data-Driven Comparison,” IEEE Trans. on System, Man, and Cybernetics, Part B, Vol.36, No.3, pp. 679-684, 2006.
- [12] E. Hullermeier and Y. Yi, “In Defense of Fuzzy Association Analysis,” IEEE Trans. on System, Man, and Cybernetics, Part B, Vol.37, No.4, pp. 1039-1043, 2007.
- [13] A. Mangalampalli and V. Pudi, “Fuzzy Association Rule Mining Algorithm for Fast and Efficient Performance on Very Large Datasets,” Proc. of the 2009 IEEE Int. Conf. on Fuzzy Systems, pp. 1163-1168, 2009.
- [14] Y. C. Lee, T. P. Hong, and T. C. Wang, “Mining Fuzzy Multiplelevel Association Rules under Multiple Minimum Supports,” Proc. of the 2006 IEEE Int. Conf. on Systems, Man, and Cybernetics, pp. 4112-4117, 2006.
- [15] Y. Xu, Y. Li, and G. Shaw, “Concise Representations for Approximate Association Rules,” Proc. of the 2008 IEEE Int. Conf. on Systems, Man, and Cybernetics, pp. 94-101, 2008.
- [16] T. Watanabe, “Mining Fuzzy Association Rules of Specified Output Field,” Proc. of the 2004 IEEE Int. Conf. on Syst., Man, and Cybern., pp. 5754-5759, 2004.
- [17] UCI Machine Learning Repository:
http://www.ics.uci.edu/˜mlearn/MLRepository.html - [18] R.Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications,” Proc. ACM SIGMOD, Paper AR-297, pp. 1-18, 1998.
- [19] M. L. Yiu and N. Mamoulis, “Iterative Projected Clustering by Subspace Mining,” IEEE Trans. on Knowledge and Data Engineering, Vol.17, Issue 2, pp. 176-189, 2005.
- [20] Y.-H. Chu, Y.-J. Chen, D.-N. Yang, and M.-S. Chen, “Reducing Redundancy in Subspace Clustering,” IEEE Trans. on Knowledge and Data Engineering, Vol.21, Issue 10, pp. 1432-1446. 2009.
- [21] T. Watanabe and H. Takahashi, “A Quantitative Association Rule Mining Algorithm Based on Clustering Algorithm,” Proc. of the 2006 IEEE Int. Conf. on Systems, Man, and Cybernetics, pp. 2652-2657, 2006.
- [22] http://euromise.vse.cz/challenge2004
- [23] http://www.stat.ucla.edu/data/fpp
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.