Paper:
Machine Vision System for Automatic Inspection of Surface Defects in Aluminum Die Casting
Yakov Frayman*, Hong Zheng**, and Saeid Nahavandi*
*Intelligent Systems Research Group, School of Engineering and Information Technology, Deakin University, Waurn Ponds, Geelong VIC 3217, Australia
**School of Electronic Information, Wuhan University, 129 Luoyu Road, Wuhan 430079, P.R.China
- [1] D. Mery, Th. Jaeger, and D. Filbert, “A review of methods for automated recognition of casting defects,” Insight, 44(7), pp. 428-436, 2002.
- [2] F. Herold, K. Bavendiek, and R. Grigat, “A third generation automatic defect recognition system,” Proc. 16th World Conference on Non Destructive Testing, Montreal, Canada, Aug. 30-Sep. 3, 2004.
- [3] Z. Xu, M. Pietikäinen, and T. Ojala, “Defect classification by texture in steel surface inspection,” Proc. QCAV 97 International Conference on Quality Control by Artificial Vision, Le Creusot, Burgundy, France, pp. 179-184, May 28-30, 1997.
- [4] J. Kyllönen, and M. Pietikäinen, “Visual inspection of parquet slabs by combining color and texture,” Proc. IAPR Workshop on Machine Vision Applications (MVA’00), Tokyo, Japan, pp. 187-192, November 28-30, 2000.
- [5] E. R. Dougherty, “An Introduction of Morphological Image Processing,” SPIE Press, Bellingham, Washington, USA, 1992.
- [6] J. A. Bangham, and S. Marshall, “Image and signal processing with mathematical morphology,” Electronics and Communication Engineering Journal, pp. 117-128, June, 1998.
- [7] L. Vincent, “Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms,” IEEE Transactions on Image Processing, 2, pp. 176-201, 1993.
- [8] C. Xu, and J. L. Prince, “Snakes, Shapes, and Gradient Vector Flow,” IEEE Transactions on Image Processing, 7(3), pp. 359-369, March, 1998.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.