IJAT Vol.15 No.4 pp. 529-536
doi: 10.20965/ijat.2021.p0529


Measurement Range Expansion of Chromatic Confocal Probe with Supercontinuum Light Source

Hiraku Matsukuma, Ryo Sato, Yuki Shimizu, and Wei Gao

Department of Finemechanics, Tohoku University
6-6-01 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan

Corresponding author

January 25, 2021
May 17, 2021
July 5, 2021
chromatic confocal probe, dual-detector, mode-locked laser, supercontinuum, profile measurement

Confocal probes have been widely adopted in various industries owing to their depth-sectioning effects. A dual-detector differential chromatic confocal probe using a mode-locked femtosecond laser source is proposed herein, and the measurement range expansion of the probe using a supercontinuum light source is discussed. Supercontinuum light has an extremely wide spectrum. A simulation based on wave optics is performed to evaluate the detection sensitivity and measurable range by considering the chromatic aberration of the lens materials. Additionally, an experimental setup is constructed using a supercontinuum light source, and its feasibility is validated. A measurable range of 200 μm is adopted in the experiment, and three-dimensional surface profile measurements are performed. However, the developed confocal probe has not been used for surface topography measurements. Experiments are conducted to verify the performance of the developed probe.

Cite this article as:
H. Matsukuma, R. Sato, Y. Shimizu, and W. Gao, “Measurement Range Expansion of Chromatic Confocal Probe with Supercontinuum Light Source,” Int. J. Automation Technol., Vol.15 No.4, pp. 529-536, 2021.
Data files:
  1. [1] S.-H. Kim, J.-H. Kim, and S.-W. Kang, “Nondestructive defect inspection for LCDs using optical coherence tomography,” Displays, Vol.32, No.5, pp. 325-329, 2011.
  2. [2] P. J. DePond, G. Guss, S. Ly, N. P. Calta, D. Deane, S. Khairallah, and M. J. Matthews, “In situ measurements of layer roughness during laser powder bed fusion additive manufacturing using low coherence scanning interferometry,” Mater. Des., Vol.154, pp. 347-359, 2018.
  3. [3] N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. T. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light Sci. Appl., Vol.8, Article No.11, 2019.
  4. [4] M. Bashkansky, M. D. Duncan, M. Kahn, D. Lewis, and J. Reintjes, “Subsurface defect detection in ceramics by high-speed high-resolution optical coherent tomography,” Opt. Lett., Vol.22, No.1, pp. 61-63, 1997.
  5. [5] W. Gao, H. Haitjema, F. Z. Fang, R. K. Leach, C. F. Cheung, E. Savio, and J. M. Linares, “On-machine and in-process surface metrology for precision manufacturing,” CIRP Ann. Manuf. Technol., Vol.68, No.2, pp. 843-866, 2019.
  6. [6] W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. Manuf. Technol., Vol.64, No.2, pp. 773-796, 2015.
  7. [7] H. Matsukuma, R. Ishizuka, M. Furuta, X. Li, Y. Shimizu, and W. Gao, “Reduction in cross-talk errors in a six-degree-of-freedom surface encoder,” Nanomanuf. Metrol., Vol.2, pp. 111-123, 2019.
  8. [8] X. Li, W. Gao, H. Muto, Y. Shimizu, S. Ito, and S. Dian, “A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage,” Precis. Eng., Vol.37, No.3, pp. 771-781, 2013.
  9. [9] W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng., Vol.27, No.3, pp. 289-298, 2003.
  10. [10] Y.-S. Jang and S.-W. Kim, “Distance Measurements Using Mode-Locked Lasers: A Review,” Nanomanufacturing and Metrology, Vol.1, pp. 131-147, 2018.
  11. [11] J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett., Vol.29, No.10, pp. 1153-1155, 2004.
  12. [12] T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt., Vol.31, No.7, pp. 919-925, 1992.
  13. [13] A. Teimel, “Technology and applications of grating interferometers in high-precision measurement,” Precis. Eng., Vol.14, No.3, pp. 147-154, 1992.
  14. [14] A. E. Ennos and M. S. Virdee, “High accuracy profile measurement of quasi-conical mirror surfaces by laser autocollimation,” Precis. Eng., Vol.4, No.1, pp. 5-8, 1982.
  15. [15] T. Kato, M. Uchida, and K. Minoshima, “No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb,” Sci. Rep., Vol.7, Article No.3670, 2017.
  16. [16] K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photo., Vol.8, pp. 695-700, 2014.
  17. [17] Y.-L. Chen, Y. Shimizu, J. Tamada, Y. Kudo, S. Madokoro, K. Nakamura, and W. Gao, “Optical frequency domain angle measurement in a femtosecond laser autocollimator,” Opt. Exp., Vol.25, No.14, pp. 16725-16738, 2017.
  18. [18] Y.-L. Chen, Y. Shimizu, J. Tamada, K. Nakamura, H. Matsukuma, X. Chen, and W. Gao, “Laser autocollimation based on an optical frequency comb for absolute angular position measurement,” Precis. Eng., Vol.54, pp. 284-293, 2018.
  19. [19] W. D. Astuti, H. Matsukuma, M. Nakao, K. Li, Y. Shimizu, and W. Gao, “An Optical Frequency Domain Angle Measurement Method Based on Second Harmonic Generation,” Sensors, Vol.21, No.2, 670, 2021.
  20. [20] T. Wilson, “Imaging Properties and Applications of Scanning Optical Microscopes,” Appl. Phys., Vol.22, pp. 119-128, 1980.
  21. [21] M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning, Vol.10, pp. 128-138, 1988.
  22. [22] P. Töröka and T. Wilson, “Rigorous theory for axial resolution in confocal microscopes,” Opt. Comm., Vol.137, Nos.1-3, pp. 127-135, 1997.
  23. [23] G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun., Vol.49, No.4, pp. 229-233, 1984.
  24. [24] M. A. Browne, O. Akinyemi, and A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning, Vol.14, pp. 145-153, 1992.
  25. [25] H. J. Tiziani and H.-M. Uhde, “Three-dimensional image sensing by chromatic confocal microscopy,” Appl. Opt., Vol.33, No.10, pp. 1838-1843, 1994.
  26. [26] E. Gauthiera, C. Brosset, H. Roche, E. Tsitrone, B. Pégourié, A. Martinez, P. Languille, X. Courtois, Y. Lallier, and M. Salamic, “Confocal microscopy: A new tool for erosion measurements on large scale plasma facing components in tokamaks,” J. Nucl. Mat., Vol.438, pp. S1216-S1220, 2013.
  27. [27] K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Exp., Vol.12, No.10, pp. 2096-2101, 2004.
  28. [28] K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun., Vol.263, No.2, pp. 156-162, 2006.
  29. [29] C. Yang, K. Shi, H. Li, Q. Xu, V. Gopalan, and Z. Liu, “Chromatic second harmonic imaging,” Opt. Exp., Vol.18, No.23, pp. 23837-23843, 2010.
  30. [30] U. Minoni, G. Manili, S. Bettoni, E. Varrenti, D. Modotto, and C. De Angelis, “Chromatic confocal setup for displacement measurement using a supercontinuum light source,” Opt. Laser Technol., Vol.49, pp. 91-94, 2013.
  31. [31] X. Chen, T. Nakamura, Y. Shimizu, C. Chen, Y.-L. Chen, H. Matsukuma, and W. Gao, “A chromatic confocal probe with a mode-locked femtosecond laser source,” Opt. Laser Technol., Vol.103, pp. 359-366, 2018.
  32. [32] C. Chen, R. Sato, Y. Shimizu, T. Nakamura, H. Matsukuma, and W. Gao, “A method for expansion of Z-directional measurement range in a mode-locked femtosecond laser chromatic confocal probe,” Applied Science, Vol.9, No.3, 454, 2019.
  33. [33] R. Sato, Y. Shimizu, C. Chen, H. Matsukuma, and W. Gao, “Investigation and improvement of thermal stability of a chromatic confocal probe with a mode-locked femtosecond laser source,” Applied Science, Vol.9, No.19, 4084, 2019.
  34. [34] R. Sato, C. Chen, H. Matsukuma, Y. Shimizu, and W. Gao, “A new signal processing method for a differential chromatic confocal probe with a mode-locked femtosecond laser,” Meas. Sci. Technol., Vol.31, No.9, 094004, 2020.
  35. [35] G. Ghosh, “Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses,” Appl. Opt., Vol.36, No.7, pp. 1540-1546, 1997.
  36. [36] Schott AG Advanced Optics, “TIE-19: Temperature Coefficient of the Refractive Index,” Schott AG Advanced Optics: Technical Information, 2016.
  37. [37] Schott AG Advanced Optics, “Optical Glass,” Data Sheets from Schott, 2019.
  38. [38] H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Exp., Vol.14, No.12, pp. 5223-5231, 2006.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 23, 2024