IJAT Vol.14 No.6 pp. 1045-1050
doi: 10.20965/ijat.2020.p1045


High Speed Machining of Inconel 718 with High Pressure Coolant Focusing on Material Structures of CBN Tools

Liu Chi Hsin, Tatsuya Sugihara, and Toshiyuki Enomoto

Department of Mechanical Engineering, Graduate School of Engineering, Osaka University
2-1, Yamada-oka, Suita, Osaka 565-0871, Japan

Corresponding author

May 8, 2020
July 17, 2020
November 5, 2020
Inconel 718, CBN cutting tool, high pressure coolant, high speed machining

Recently, cubic boron nitride (CBN) cutting tools and high pressure coolant (HPC) have garnered significant attention for high performance machining of difficult-to-cut materials, such as nickel-based super alloy, Inconel 718. In this study, the cutting performance of a low-CBN-content (L-CBN) cutting tool, which is known as a suitable CBN material structure for the high-speed machining of Inconel 718, is investigated under the HPC conditions. The experimetntal results show that, although crater wear is significantly suppressed as the coolant pressure increases, the combination of high cutting speed and high pressure coolant causes severe thermal cracking on the tool rake face of the L-CBN cutting tool. Hence, we evaluate the cutting performance of high-CBN-content (H-CBN) cutting tool which has smaller coefficcient of thermal expansion, compared with the L-CBN cutting tool. A series of cutting experiments shows that changing the material structure of the CBN tool effectively suppressed thermal cracking and that the H-CBN tool is a highly promising option for the high performance machining of Inconel 718.

Cite this article as:
Liu Chi Hsin, Tatsuya Sugihara, and Toshiyuki Enomoto, “High Speed Machining of Inconel 718 with High Pressure Coolant Focusing on Material Structures of CBN Tools,” Int. J. Automation Technol., Vol.14, No.6, pp. 1045-1050, 2020.
Data files:
  1. [1] E. A. Loria, “The status and prospects of alloy 718,” J. Met., Vol.40, No.7, pp. 36-41, doi: 10.1007/BF03258149, 1988.
  2. [2] A. R. C. Sharman, J. I. Hughes, and K. Ridgway, “An analysis of the residual stresses generated in Inconel 718 when turning,” J. Mater. Process. Tech., Vol.173, No.3, pp. 359-367, doi: 10.1016/j.jmatprotec.2005.12.007, 2006.
  3. [3] M. Arunachalam, M. A. Mannan, and A. C. Spowage, “Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools,” Int. J. Mach. Tools & Manuf., Vol.44, No.14, pp. 1481-1491, doi: 10.1016/j.ijmachtools.2004.05.005, 2004.
  4. [4] R. M’Saoubi, J. C. Outeiro, H. Chandrasekaran, O. W. Dillon Jr., and I. S. Jawahir, “A review of surface integrity in machining and its impact on functional performance and life of machined products,” Int. J. Sustainable Manufacturing., Vol.1, No.1, doi: 10.1504/IJSM.2008.019234, 2004.
  5. [5] I. A. Choudhury and M. A. El-Baradi, “Machinability of nickel-base super alloys: a general review,” J. Mater. Process. Tech., Vol.77, No.1-3, pp. 278-284, doi: 10.1016/S0924-0136(97)00429-9, 1998.
  6. [6] T. Kitagawa, A. Kubo, and K. Maekawa, “Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti-6Al-6V-2Sn,” Wear., Vol.202, No.2, pp. 142-148, doi: 10.1016/S0043-1648(96)07255-9, 1997.
  7. [7] J. M. Zhou, V. Bushlya, and P. Avdovic, “Study of surface quality in high speed turning of Inconel 718 with uncoated and coated CBN tools,” Int. J. Adv. Manuf. Technol., Vol.58, Nos.1-4, pp. 141-151, doi: 10.1007/s00170-011-3374-7, 2012.
  8. [8] J. P. Costes, Y. Guillet, G. Poulachon, and M. Dessoly, “Tool-life and wear mechanisms of CBN tools in cutting of Inconel 718,” Int. J. Mach. Tools Manuf., Vol.47, pp. 1081-1087, doi: 10.1016/j.ijmachtools.2006.09.031, 2007.
  9. [9] H. Tanaka, T. Sugihara, and T. Enomoto, “High Speed Machining of Inconel 718 Focusing on Wear Behaviors of PCBN Cutting Tool,” Procedia CIRP, Vol.46, pp. 545-548, doi: 10.1016/j.procir.2016.03.120, 2016.
  10. [10] Z. C. Lin and D. Y. Chen, “A study of cutting with a CBN tool,” J. Mater Process Tech., Vol.49, pp. 149-164, doi: 10.1016/0924-0136(94)01321-Q, 1995.
  11. [11] P. J. Heath, “Ultra-hard Materials,” European J. of Engineering Education, Vol.12, No.1, pp. 5-20, doi: 10.1080/03043798708939332, 1987.
  12. [12] T. H. C. Childs, “Friction modelling in metal cutting,” Wear, Vol.260, No.3, pp. 310-318, doi: 10.1016/j.wear.2005.01.052, 2006.
  13. [13] T. H. C. Childs, D. Richings, and A. B. Wilcox, “Metal cutting: Mechanics, surface physics and metallurgy,” Int. J. Mech. Sci., Vol.14, No.6, pp. 359-368, doi: 10.1016/0020-7403(72)90079-3, 1972.
  14. [14] R. J. S. Pigott and A. T. Colwell, “Hi-Jet System for Increasing Tool Life,” SAE Technical Papers, Vol.6, No.3, pp. 547-566, doi: 10.4271/520254, 1952.
  15. [15] M. Rahman, A. S. Kumar, and M. R. Choudhury, “Identification of Effective Zones for High Pressure Coolant in Milling,” CIRP Annals, Vol.49, No.1, pp. 47-52, doi: 10.1016/S0007-8506(07)62893-5, 2000.
  16. [16] E. O. Ezugwu and J. Bonney, “Effect of high-pressure coolant supply when machining nickel-base, Inconel 718, alloy with coated carbide tools,” J. Mater. Process. Technol., Vols.153-154, pp. 1045-1050, doi: 10.1016/j.jmatprotec.2004.04.329, 2004.
  17. [17] E. O. Ezugwu, R. B. da Silva, J. Bonney, and Á. R. Machado, “Evaluation of the performance of CBN tools when turning Ti-6Al-4V alloy with high pressure coolant supplies,” Int. J. Mach. Tools Manuf., Vol.45, pp. 1009-1014, doi: 10.1016/j.ijmachtools.2004.11.027, 2005.
  18. [18] R. B. da Silva, Á. R. Machado, E. O. Ezugwu, J. Bonney, and W. F. Sales, “Tool life and wear mechanisms in high speed machining of Ti-6Al-4V alloy with PCD tools under various coolant pressures,” J. Mater Process Tech., Vol.213, No.8, pp. 1459-1464, doi: 10.1016/j.jmatprotec.2013.03.008, 2013.
  19. [19] M. B. da Silva and J. Wallbank, “Cutting temperature: prediction and measurement methods,” J. Mater. Process. Technol., Vol.88, pp. 195-202, doi: 10.1016/S0924-0136(98)00395-1, 1999.
  20. [20] D. P. Adler, W. W. S. Hii, D. J. Michalek, and J. W. Sutherland, “Examining the role of cutting fluids in machining and efforts to address associated environmental/health concerns,” Mach. Sci. Technol., Vol.10, No.1, pp. 23-53, 2007.
  21. [21] D. Kramar and J. Kopac, “High pressure cooling in the machining of hard-to-machine materials,” JMechE, Vol.55, No.11, pp. 685-694, doi: 10.1080/10910340500534282, 2009.
  22. [22] M. D’Addona and J. Raykar, “Thermal Modeling of Tool Temperature Distribution during High Pressure Coolant Assisted Turning of Inconel 718,” Materials, Vol.12, No.3, 408, doi: 10.3390/ma12030408, 2019.
  23. [23] N. T. Alagan, P. Hoier, T. Beno, U. Klement, and A. Wretland, “Coolant boiling and cavitation wear – a new tool wear mechanism on WC tools in machining Alloy 718 with high-pressure coolant,” Wear, Vols.452-453, doi: 10.1016/j.wear.2020.203284, 2020.
  24. [24] S. Reyntjens and R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng., Vol.11, pp. 287-300, 2001.
  25. [25] K. Uehara, “Fundamental Approach to the Thermal Crack of Cermet Cutting Tools,” CIRP Annals, Vol.30, pp. 47-51, doi: 10.1016/S0007-8506(07)60893-2, 1981.
  26. [26] H. O. Pierson, “Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications,” William Andrew, p. 193, 1996.
  27. [27] D. S. Stone, K. B. Yoder, and W. D. Sproul, “Hardness and elastic modulus of TiN based on continuous indentation technique and new correlation,” J. Vac. Sci. Technol. A, Vol.9, No.4, pp. 2543-2547, doi: 10.1116/1.577270, 1991.
  28. [28] B. Zhao, Z. Li, and Y. Zhu, “Effect of polycrystalline mullite fibers on the properties of vitrified bond and vitrified CBN composites,” Ceram. Int., Vol.39, pp. 2863-2868, doi: 10.1016/j.ceramint.2012.09.059, 2013.
  29. [29] A. L. McKie, “Mechanical Properties of cBN-Al Composite Materials Dependence on Grain Size of cBN and Binder Content,” Wits University, p. 7, 2009.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Mar. 05, 2021