IJAT Vol.12 No.1 pp. 29-36
doi: 10.20965/ijat.2018.p0029


High-Yield Bridged Assembly of ssDNA-Modified SWCNT Using Dielectrophoresis

Yusuke Shiomi, Yoshikazu Hirai, Osamu Tabata, and Toshiyuki Tsuchiya

Department of Micro Engineering, Kyoto University
Nishikyo-ku, Kyoto 615-8540, Japan

Corresponding author

June 1, 2017
November 16, 2017
January 5, 2018
single-walled carbon nanotube (SWCNT), single strand DNA modification, dielectrophoresis, electroless gold deposition, back-gate type field effect transistor (FET)

A high-yield, bridged assembly of single-walled carbon nanotubes (SWCNT) was demonstrated using single-strand DNA (ssDNA) modification, dielectrophoresis (DEP), and electroless deposition of gold. ssDNA modification is used for the mono-dispersion of an SWCNT solution for DEP. Gold deposition after DEP was used for the electrical and mechanical clamping of assembled SWCNTs. DEP conditions were investigated, and the best conditions, namely, 2 Vpp, 1 kHz, 1 min for 200-nm gap electrodes, resulted in 8 single-assembly and 19 multiple-assembly SWCNTs between 33 pairs of electrode gaps. The electrical properties of the assembled ssDNA-modified SWCNTs were measured as a back-gate type of FET, and both metallic and semiconducting properties were observed.

Cite this article as:
Y. Shiomi, Y. Hirai, O. Tabata, and T. Tsuchiya, “High-Yield Bridged Assembly of ssDNA-Modified SWCNT Using Dielectrophoresis,” Int. J. Automation Technol., Vol.12 No.1, pp. 29-36, 2018.
Data files:
  1. [1] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, Vol.363, No.6430, pp. 603-605, 1993. DOI: 10.1038/363603a0
  2. [2] D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,” Nature, Vol.363, No.6430, pp. 605-607, 1993. DOI: 10.1038/363605a0
  3. [3] T. Helbling, R. Pohle, L. Durrer, C. Stampfer, C. Roman, A. Jungen, M. Fleischer, and C. Hierold, “Sensing NO2 with individual suspended single-walled carbon nanotubes,” Sensors Actuators, B Chem., Vol.132, No.2, pp. 491-497, 2008. DOI: 10.1016/j.snb.2007.11.036
  4. [4] M. Tersa Martínez, Y.-C. Tseng, M. González, and J. Bokor, “Streptavidin as CNTs and DNA Linker for the Specific Electronic and Optical Detection of DNA Hybridization,” J. Phys. Chem. C., Vol.116, pp. 22579-22586, 2012. DOI: 10.1021/jp306535d
  5. [5] M. C. Hersam, “Progress towards monodisperse single-walled carbon nanotube,” Nature Nanotech., Vol.3, pp. 387-395, 2008. DOI: 10.1038/nnano.2008.135
  6. [6] K. Hokazono, Y. Hirai, T. Tsuchiya, and O. Tabata, “FET Properties of Single-Walled Carbon Nanotubes Individually Assembled Utilizing Single Strand DNA,” The 28th IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS 2015), Estoril, Portugal (Jan. 18-22, 2015), pp. 417-420. DOI: 10.1109/memsys.2015.7050978
  7. [7] T. Kataoka, Y. Hirai, K. Sugano, T. Tsuchiya, and O. Tabata, “Mechanical and Electrical Clamping of DEP Assembled SWCNT Using Electroless Gold Deposition,” IEEJ Trans Sens. Micromachines, Vol.132-E, No.5, pp. 108-113, 2012 (in Japanese). DOI: 10.1541/ieejsms.132.108
  8. [8] A. Shankar, J. Mittal, and A. Jagota, “Binding between DNA and carbon nanotubes strongly depends upon sequence and chirality,” Langmuir, Vol.30, No.11, pp. 3176-3183, 2014. DOI: 10.1021/la500013c
  9. [9] G. Ao and M. Zheng, “Preparation and Separation of DNA-Wrapped Carbon Nanotubes,” Curr. Protoc. Chem. Biol. Vol.7, pp. 43-51 2015. DOI: 10.1002/9780470559277.ch140099
  10. [10] A. Vijayaraghavan, S. Blatt, D. Weissenberger, M. Oron-Carl, F. Hennrich, D. Gerthsen, H. Hahn, and R. Krupke, “Ultra-large-scale directed assembly of single-walled carbon nanotube devices,” Nano Lett., Vol.7, No.6, pp. 1556-1560, 2007. DOI: 10.1021/nl0703727
  11. [11] E. M. Freer, O. Grachev, X. Duan, S. Martin, and D. P. Stumbo, “High-yield self-limiting single-nanowire assembly with dielectrophoresis,” Nature Nanotech., Vol.5, pp. 525-530, 2010. DOI: 10.1038/nnano.2010.106
  12. [12] M. Zheng A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, and N. G. Tassi, “DNA-assisted Dispersion and Separation of Carbon Nanotubes,” Nature Materials, Vol.2, pp. 338-342, 2003. DOI: 10.1038/nmat877
  13. [13] S. Mao, G. Lu, K. Yu, and J. Chen, “Specific biosensing using carbon nanotubes functionalized with gold nanoparticle-antibody conjugates,” Carbon, Vol.48, No.2, pp. 479-486, 2010. DOI: 10.1016/j.carbon.2009.09.065
  14. [14] M. Dimaki and P. Bøggild, “Dielectrophoresis of carbon nanotubes using microelectrodes: a numerical study,” Nanotechnology, Vol.15, pp. 1095-1102, 2004. DOI: 10.1088/0957-4484/15/8/039
  15. [15] K. Keren, “DNA-Templated Carbon Nanotube Field-Effect Transistor,” Science, Vol.302, No.5649, pp. 1380-1382, 2003. DOI: 10.1126/science.1091022
  16. [16] X. Tu, S. Manohar, A. Jagota, and M. Zheng, “DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes,” Nature, Vol.460, No.7252, pp. 250-253, 2009. DOI: 10.1038/nature08116
  17. [17] K. Bradley, J. Cumings, A. Star, J. C. P. Gabriel, and G. Grüner, “Influence of mobile ions on nanotube based FET devices,” Nano Lett., Vol.3, No.5, pp. 639-641, 2003. DOI: 10.1021/nl025941j
  18. [18] W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, and H. Dai, “Hysteresis caused by water molecules in carbon nanotube field-effect transistors,” Nano Lett., Vol.3, No.2, pp. 193-198, 2003. DOI: 10.1021/nl0259232
  19. [19] D. R. Kauffman and A. Star, “Carbon nanotube gas and vapor sensors,” Angew. Chem. Int. Ed., Vol.47, No.35, pp. 6550-6570, 2008. DOI: 10.1002/anie.200704488
  20. [20] M. H. Yang, K. B. K. Teo, L. Gangloff, W. I. Milne, D. G. Hasko, Y. Robert, and P. Legagneux, “Advantages of top-gate, high-k dielectric carbon nanotube field-effect transistors,” Appl. Phys. Lett., Vol.88, No.11, pp. 1-4, 2006. DOI: 10.1063/1.2186100

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 12, 2024