Paper:
High-Yield Bridged Assembly of ssDNA-Modified SWCNT Using Dielectrophoresis
Yusuke Shiomi, Yoshikazu Hirai, Osamu Tabata, and Toshiyuki Tsuchiya†
Department of Micro Engineering, Kyoto University
Nishikyo-ku, Kyoto 615-8540, Japan
†Corresponding author
A high-yield, bridged assembly of single-walled carbon nanotubes (SWCNT) was demonstrated using single-strand DNA (ssDNA) modification, dielectrophoresis (DEP), and electroless deposition of gold. ssDNA modification is used for the mono-dispersion of an SWCNT solution for DEP. Gold deposition after DEP was used for the electrical and mechanical clamping of assembled SWCNTs. DEP conditions were investigated, and the best conditions, namely, 2 Vpp, 1 kHz, 1 min for 200-nm gap electrodes, resulted in 8 single-assembly and 19 multiple-assembly SWCNTs between 33 pairs of electrode gaps. The electrical properties of the assembled ssDNA-modified SWCNTs were measured as a back-gate type of FET, and both metallic and semiconducting properties were observed.
- [1] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, Vol.363, No.6430, pp. 603-605, 1993. DOI: 10.1038/363603a0
- [2] D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,” Nature, Vol.363, No.6430, pp. 605-607, 1993. DOI: 10.1038/363605a0
- [3] T. Helbling, R. Pohle, L. Durrer, C. Stampfer, C. Roman, A. Jungen, M. Fleischer, and C. Hierold, “Sensing NO2 with individual suspended single-walled carbon nanotubes,” Sensors Actuators, B Chem., Vol.132, No.2, pp. 491-497, 2008. DOI: 10.1016/j.snb.2007.11.036
- [4] M. Tersa Martínez, Y.-C. Tseng, M. González, and J. Bokor, “Streptavidin as CNTs and DNA Linker for the Specific Electronic and Optical Detection of DNA Hybridization,” J. Phys. Chem. C., Vol.116, pp. 22579-22586, 2012. DOI: 10.1021/jp306535d
- [5] M. C. Hersam, “Progress towards monodisperse single-walled carbon nanotube,” Nature Nanotech., Vol.3, pp. 387-395, 2008. DOI: 10.1038/nnano.2008.135
- [6] K. Hokazono, Y. Hirai, T. Tsuchiya, and O. Tabata, “FET Properties of Single-Walled Carbon Nanotubes Individually Assembled Utilizing Single Strand DNA,” The 28th IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS 2015), Estoril, Portugal (Jan. 18-22, 2015), pp. 417-420. DOI: 10.1109/memsys.2015.7050978
- [7] T. Kataoka, Y. Hirai, K. Sugano, T. Tsuchiya, and O. Tabata, “Mechanical and Electrical Clamping of DEP Assembled SWCNT Using Electroless Gold Deposition,” IEEJ Trans Sens. Micromachines, Vol.132-E, No.5, pp. 108-113, 2012 (in Japanese). DOI: 10.1541/ieejsms.132.108
- [8] A. Shankar, J. Mittal, and A. Jagota, “Binding between DNA and carbon nanotubes strongly depends upon sequence and chirality,” Langmuir, Vol.30, No.11, pp. 3176-3183, 2014. DOI: 10.1021/la500013c
- [9] G. Ao and M. Zheng, “Preparation and Separation of DNA-Wrapped Carbon Nanotubes,” Curr. Protoc. Chem. Biol. Vol.7, pp. 43-51 2015. DOI: 10.1002/9780470559277.ch140099
- [10] A. Vijayaraghavan, S. Blatt, D. Weissenberger, M. Oron-Carl, F. Hennrich, D. Gerthsen, H. Hahn, and R. Krupke, “Ultra-large-scale directed assembly of single-walled carbon nanotube devices,” Nano Lett., Vol.7, No.6, pp. 1556-1560, 2007. DOI: 10.1021/nl0703727
- [11] E. M. Freer, O. Grachev, X. Duan, S. Martin, and D. P. Stumbo, “High-yield self-limiting single-nanowire assembly with dielectrophoresis,” Nature Nanotech., Vol.5, pp. 525-530, 2010. DOI: 10.1038/nnano.2010.106
- [12] M. Zheng A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, and N. G. Tassi, “DNA-assisted Dispersion and Separation of Carbon Nanotubes,” Nature Materials, Vol.2, pp. 338-342, 2003. DOI: 10.1038/nmat877
- [13] S. Mao, G. Lu, K. Yu, and J. Chen, “Specific biosensing using carbon nanotubes functionalized with gold nanoparticle-antibody conjugates,” Carbon, Vol.48, No.2, pp. 479-486, 2010. DOI: 10.1016/j.carbon.2009.09.065
- [14] M. Dimaki and P. Bøggild, “Dielectrophoresis of carbon nanotubes using microelectrodes: a numerical study,” Nanotechnology, Vol.15, pp. 1095-1102, 2004. DOI: 10.1088/0957-4484/15/8/039
- [15] K. Keren, “DNA-Templated Carbon Nanotube Field-Effect Transistor,” Science, Vol.302, No.5649, pp. 1380-1382, 2003. DOI: 10.1126/science.1091022
- [16] X. Tu, S. Manohar, A. Jagota, and M. Zheng, “DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes,” Nature, Vol.460, No.7252, pp. 250-253, 2009. DOI: 10.1038/nature08116
- [17] K. Bradley, J. Cumings, A. Star, J. C. P. Gabriel, and G. Grüner, “Influence of mobile ions on nanotube based FET devices,” Nano Lett., Vol.3, No.5, pp. 639-641, 2003. DOI: 10.1021/nl025941j
- [18] W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, and H. Dai, “Hysteresis caused by water molecules in carbon nanotube field-effect transistors,” Nano Lett., Vol.3, No.2, pp. 193-198, 2003. DOI: 10.1021/nl0259232
- [19] D. R. Kauffman and A. Star, “Carbon nanotube gas and vapor sensors,” Angew. Chem. Int. Ed., Vol.47, No.35, pp. 6550-6570, 2008. DOI: 10.1002/anie.200704488
- [20] M. H. Yang, K. B. K. Teo, L. Gangloff, W. I. Milne, D. G. Hasko, Y. Robert, and P. Legagneux, “Advantages of top-gate, high-k dielectric carbon nanotube field-effect transistors,” Appl. Phys. Lett., Vol.88, No.11, pp. 1-4, 2006. DOI: 10.1063/1.2186100
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.