single-au.php

IJAT Vol.11 No.6 pp. 869-877
doi: 10.20965/ijat.2017.p0869
(2017)

Paper:

Fundamental Study on Addition of Osteoconductivity to Titanium Alloy Surface by EDM

Togo Shinonaga, Yuta Iida, Ryota Toshimitsu, and Akira Okada

Graduate School of Natural Science and Technology, Okayama University
3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan

Corresponding author

Received:
January 17, 2017
Accepted:
April 18, 2017
Online released:
October 31, 2017
Published:
November 5, 2017
Keywords:
electrical discharge machining (EDM), osteoconductivity, artificial joint component
Abstract

In recent years, one common cure for losses in joint function caused by osteoarthritis or rheumatoid arthritis is replacement with an artificial joint. For this reason, it is necessary to add osteoconductivity to artificial joint component surfaces that make contact with bone, thereby reducing the period of time necessary to fixate the bone tissue and the artificial joint component. With the intent of efficiently machining the joint shape by electrical discharge machining (EDM) and simultaneously formation of a surface with osteoconductivity, this study discusses the possibility of adding osteoconductivity to a titanium EDMed surface.

Cite this article as:
T. Shinonaga, Y. Iida, R. Toshimitsu, and A. Okada, “Fundamental Study on Addition of Osteoconductivity to Titanium Alloy Surface by EDM,” Int. J. Automation Technol., Vol.11, No.6, pp. 869-877, 2017.
Data files:
References
  1. [1] T. Albrektsson, P.I. Bråemark, H.A. Hansson, B. Kasemo, K.Larsson, I. Lundström, D. H. McQueen, and R. Skalak., “The interface zone of inorganic implantsIn vivo: Titanium implants in bone,” Ann. Biomed. Eng., Vol.11, pp. 1-27, 1983.
  2. [2] X. Liua, P.K. Chub, and C. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Materials Science and Engineering R,Vol.47, pp. 49-121, 2004.
  3. [3] J. A. DiPisa, G. S. Sih, and A. T. Berman, “The Temperature Problem at the Bone-Acrylic Cement Interface of the Total Hip Replacement,” Clin. Orthop, Res., Vol.121, pp. 95-98, 1976.
  4. [4] W. Petty, “Methyl methacrylate concentrations in tissues adjacent to bone cement,” J. Biomed. Mater. Res., Vol.14, pp. 427-434, 1980.
  5. [5] H. Yoshikawa, T. Nakano, A. Matsuoka, and Y. Nakashima, “Miraigatajinkoukansetsuwomezashite – sonorekishikara shouraitenboumade –,” NIHON IGAKUKAN, p. 299, 2013 (in Japanese).
  6. [6] L. Sun, C. C. Berndt, K. A. Gross, and A. Kucuk, “Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: A review,” J. Biomed. Mater. Res., Vol.58, pp. 570-592, 2001.
  7. [7] T. D. Driskell, “Early History of Calcium Ohosphate Materials and Coatings,” Philadelphia: ASTM Publication, p. 3, 1994.
  8. [8] W. R. Lacefield, “An Introduction to Bioceramics,” L. L. Hench, J. Wilson (Eds.), Singapore: World Scientific, p. 223, 1993.
  9. [9] K. de Groot, R. G. T. Geesink, C. P. A. T. Klein, and P. Serekian, “Plasma sprayed coatings of hydroxyapatite,” J. Biomed. Mater. Res., Vol.21, pp. 1375-1381, 1987.
  10. [10] L. H. Li, Y. M. Kong, H. W. Kim, Y. W. Kim, H. E. Kim, S. J. Heo, and J. Y. Koak, “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation,” Biomaterials, Vol.25, pp. 2867-2875, 2004.
  11. [11] Y. Tsutsumi, M. Niinomi, M. Nakai, H. Tsutsumi, H. Doi, N. Nomura, and T. Hanawa, “Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti–29Nb–13Ta–4.6Zr alloy,” Appl. Surf. Sci. Vol.262, pp. 34-38, 2012.
  12. [12] J. Lu, M. P. Rao, N. C. MacDonald, D. Khang, and T. J. Webster, “UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings,” Acta Biomater. Vol.4, pp. 1518-1529, 2008.
  13. [13] A. Sugino, K. Uetsuki, K. Tsuru, S. Hayakawa, A, Osaka and C. Ohtsuki, “Surface Topography Designed to Provide Osteoconductivity to Titanium after Thermal Oxidation,” Materials Trans., Vol.49, No.3, pp. 428-434, 2008.
  14. [14] M. Mizutani, R. Honda, Y. Kurashina, J. Komotori, and H. Ohmori, “Improved Cytocompatibility of Nanosecond-Pulsed Laser-Treated Commercially Pure Ti Surfaces,” Int. J. of Automation Technology, Vol.8, No.1, pp. 102-109, 2014.
  15. [15] M. Mizutani, N. Masuko, R. Honda, R. Murakami, J. Komotori, and T. Kuriyagawa, “Creation of bioactive surfaces by nanosecond-pulsed laser irradiation of commercially pure titanium,” J. of the Japan Society for Abrasive Technology, Vol.59, No.1, pp. 17-22, 2015.
  16. [16] H. Takezawa, N. Mohri, K. Asano, and Y. Kodama, “Development of Micro Electrical Discharge Machine,” Int. J. of Automation Technology, Vol.2, No.2, pp. 124-130, 2008.
  17. [17] K. Furutani, “Proposal for Abrasive Layer Fabrication on Thin Wire by Electrical Discharge Machining,” Int. J. of Automation Technology, Vol.8, No.1, pp. 394-398, 2014.
  18. [18] T. Kokubo, and T. Takadama, “How useful is SBF in predicting in vivo bone bioactivity? Biomaterials,” Vol.27, pp. 2907-2915, 2006.
  19. [19] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, and T. Yamamuro, “Solution able to reproduce in vivo surface – structure changes in bioactive glass-ceramic A-W,” J. Biomed. Mater. Res, Vol.24, pp. 721-734, 1990.
  20. [20] ISO 23317:2007, “Implants for surgery. In vitro evaluation for apatite-forming ability of implant materials.”
  21. [21] S. V. Dorozhkin, “Medical application of calcium orthophosphate bioceramics,” BIO, Vol.1, pp. 1-51, 2011.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Dec. 11, 2018