IJAT Vol.11 No.5 pp. 754-760
doi: 10.20965/ijat.2017.p0754


A Novel Particle Sizing Method for Nano Abrasives in CMP Slurry by Using Fluorescent Nano Probe

Terutake Hayashi, Toshiki Seri, and Syuhei Kurokawa

Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University
774 Motooka, Nishiku, Fukuoka, Fukuoka 819-0395, Japan

Corresponding author

December 21, 2016
March 2, 2017
Online released:
August 30, 2017
September 5, 2017
nanoparticle sizing, fluorescence correlation spectroscopy, dynamic light scattering, viscosity compensation, Brownian diffusion

In this study, a novel particle sizing method is proposed based on Brownian diffusion analysis for abrasive particles using fluorescent probing. A fluorescent probe is used to measure the average dynamic viscosity of the nanoparticle dispersion in a solvent. By measuring both the average dynamic viscosity and the size of the nanoscale abrasive particles simultaneously, the uncertainty of the particle sizing is considered to be improved based on the viscosity compensation for the Brownian diffusion of nanoparticles. In this research, the authors investigate the difference between the nanoviscosity and the shear viscosity of the solvent to verify the efficacy in using viscosity compensation for nanoparticle sizing.

  1. [1] R. Dejule, “CMP challenges below a quarter micron,” Semicond. Int., pp. 54-60, 1997.
  2. [2] J. Luo and D. A. Dornfeld, “Material removal mechanism in chemical mechanical polishing: theory and modelling,” Semiconductor Manufacturing, IEEE Trans., Vol.14, No.2, pp. 112-133, 2001.
  3. [3] D. Wang, J. Lee, K. Holland, T. Bibby, S. Beaudoin, and T. Cale, “Von mises stress in chemical-mechanical polishing processes,” J. Electrochem. Soc., Vol.144, pp. 1121-1127, 1997.
  4. [4] J. Tichy, J. A. Levert, L. Shan, and S. Danyluk, “Contact mechanics and lubrication hydrodynamics of chemical mechanical polishing,” J. Electrochem. Soc., Vol.146, pp. 1523-1528, 1999.
  5. [5] A. S. Khair and J. F. Brady, “Single particle motion in colloidal dispersions: a simple model for active and nonlinear microrheology,” J. Fluid Mech., Vol.557, pp. 73-117, 2006.
  6. [6] T. Kalwarczyk, N. Ziębacz, A. Bielejewska, E. Zaboklicka, K. Koynov, J. Szymański, A. Wilk, A. Patkowski, J. Gapiński, H. J. Butt, and R. Hołyst, “Comparative analysis of viscosity of complex liquids and cytoplasm of mammalian cells at the nanoscale,” Nano Lett., Vol.11, No.5, pp. 2157-2163, 2011.
  7. [7] D. Lavalette, C. Tétreau, M. Tourbez, and Y. Blouquit, “Microscopic viscosity and rotational diffusion of proteins in a macromolecular environment,” Biophys. J., Vol.76, No.5, pp. 2744-2751, 1999.
  8. [8] P. Debye, Polar Molecules, Dover, New York, 1929.
  9. [9] K. Kinosita, S. Kawato, and A. Ikegami, “A theory of fluorescence polarization decay in membranes,” Biophys. J., Vol.20, No.3, pp. 289-305, 1977.
  10. [10] P. P. Jose, et al., “Complete breakdown of the Debye model of rotational relaxation near the isotropic-nematic phase boundary: Effects of intermolecular correlations in orientational dynamics,” Phys. Rev. E, Vol.73, No.3, 031705, 2006.
  11. [11] Y. Chen, J. D. Müller, P. T. So, and E. Gratton, “The photon counting histogram in fluorescence fluctuation spectroscopy,” Biophys. J., Vol.77, No.1, pp. 553-67, 1999.
  12. [12] F. Luschtinetz and C. Dosche, “Determination of micelle diffusion coefficients with fluorescence correlation spectroscopy (FCS),” J. Colloid Interface Sci., Vol.338, No.1, pp. 312-315, 2009.
  13. [13] T. Deptuła, J. Buitenhuis, M. Jarzebski, A. Patkowski, and J. Gapinski, “Size of Submicrometer Particles Measured by FCS: Correction of the Confocal Volume,” Langmuir, Vol.31, No.24, pp. 6681-6687, 2015.
  14. [14] P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophysical J., Vol.72, No.4, pp. 1878-86, 1997.
  15. [15] ISO 22412:2008 Particle Size Analysis – Dynamic Light Scattering.
  16. [16] J. C. Thomas, “The determination of log normal particle size distributions by dynamic light scattering,” J. Colloid Interface Sci., Vol.117, No.1, pp. 187-192, 1987.
  17. [17] D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers,” Science, Vol.297, No.5584, pp. 1160-1163, 2002.
  18. [18] D. E. Koppel, “Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of Cumulants,” J. Chem. Phys., Vol.57, No.11, pp. 4814-4820, 1972.
  19. [19] L. Cipelletti, J. P. Biron, M. Martin, and H. Cottet, “Polydispersity Analysis of Taylor Dispersion Data: The Cumulant Method,” Anal. Chem., Vol.86, No.13, pp. 6471-6478, 2014.
  20. [20] J. F. Swindells, C. F. Snyder, R. C. Hardy, and E. Golden, “Viscosities of Sucrose Solutions at Various Temperatures: Tables of Recalculated Values,” NIST, NBS Circular, No.440, 1958.
  21. [21] N. S. Cheng, “Formula for viscosity of glycerol-water mixture,” Industrial and Engineering Chemistry Research, Vol.47, pp. 3285-3288, 2008.
  22. [22] T. Hayashi, Y. Ishizaki, M. Michihata, Y. Takaya, and S. Tanaka, “Nanoparticle sizing method based on fluorescence anisotropy analysis,” Measurement, Vol.59, pp. 382-388, 2015.
  23. [23] T. Hayashi, Y. Ishizaki, M. Michihata, Y. Takaya, and S. Tanaka, “Study on Nanoparticle Sizing Using Fluorescent Polarization Method with DNA Fluorescent Probe,” Int. J. of Automation Technology, Vol.9, No.5, pp. 534-540, 2015.
  24. [24] A. H. A. Clayton, et al., “Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM),” Biophys. J., Vol.83, No.3, pp. 1631-1649, 2002.
  25. [25] R. D. Spencer and G. Weber, “Measurements of subnanosecond fluorescence lifetimes with a cross-correlation phase fluorometer,” Annals of the New York Academy of Science, Vol.158, No.1, pp. 361-376, 1969.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Sep. 19, 2017