IJAT Vol.11 No.5 pp. 699-706
doi: 10.20965/ijat.2017.p0699


Fabrication of Ultra-Small-Diameter Optical-Fiber Probe Using Acid-Etch Technique and CO2 Laser for 3D-Micro Metrology

Hiroshi Murakami*,†, Akio Katsuki**, Takao Sajima**, and Kosuke Uchiyama*

*The University of Kitakyushu
1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan

Corresponding author

**Kyushu University, Fukuoka, Japan

December 1, 2016
March 21, 2017
Online released:
August 30, 2017
September 5, 2017
microstructure, measurement, optical fiber probe, laser diode, CMM

This paper presents a system for measuring a 3D microstructure using an optical-fiber probe. A stylus shaft was fabricated using an acid-etch technique.We investigated the process of fabricating a stylus tip using an adhesive method, an arc-discharge method, and a CO2-laser technique. The characteristics of the stylus shaft in the process of detecting the displacement were then described. Finally, in the case wherein the stylus tip was fabricated using an adhesive, the deformation of the stylus tip caused by the contraction of an ultraviolet curing resin, which was used to glue the stylus shaft to the stylus sphere, was analyzed using a finite-element method. Accordingly, a stylus shaft and tip with respective diameters of 0.4 μm or greater and 1 μm or greater were manufactured using the adhesive method. Moreover, the results helped confirm that stylus tips with diameters in the ranges of 20–196 and 1.2–300 μm were fabricated using the arc-discharge method and CO2-laser technique, respectively, with high yield. In addition, the results of the finite-element method revealed that the maximum elastic-deformation volume was approximately 0.8 nm and the effect of the contraction of the ultraviolet curing resin is minimal.

Cite this article as:
H. Murakami, A. Katsuki, T. Sajima, and K. Uchiyama, “Fabrication of Ultra-Small-Diameter Optical-Fiber Probe Using Acid-Etch Technique and CO2 Laser for 3D-Micro Metrology,” Int. J. Automation Technol., Vol.11 No.5, pp. 699-706, 2017.
Data files:
  1. [1] M. Maruyama, H. Osaka, M. Ono, and S. Kasei, “Development of optical apparatus for measuring small hole diameter,” J. Jpn. Soc. Precis. Eng., Vol.62, pp. 145-149, 1996 (in Japanese).
  2. [2] N. Akiyama, A. Kitano, M. Yoshida, E. Fujimoto, H. Kohira, and T. Fukushima, “Development of an optical measurement equipment for diameter of small and deep hole,” J. Jpn. Soc. Precis. Eng., Vol.62, pp. 84-588, 1996 (in Japanese).
  3. [3] Onikura, Y. Kuwabara, T. Nakamura, T. Sajima, Y. Imazeki, A. Katsuki, and S. Yamada, “Development of an optical hole-diameter measurement instrument – Optical analysis, fundamental experiment, trial manufacture and performance test,” J. Jpn. Soc. Precis. Eng., Vol.61, pp. 248-252, 1995 (in Japanese).
  4. [4] T. Masuzawa, Y. Hamasaki, and M. Fujino, “Vibroscanning method for nondestructive measurement of small holes,” CIRP Ann., Vol.42, pp. 589-592, 1993.
  5. [5] T. Masuzawa, B. J. Kim, C. Bergaud, and M. Fujino, “Twin-probe vibroscanning method for dimensional measurement of microholes,” CIRP Ann., Vol.46, pp. 437-440, 1997.
  6. [6] J. D. Claverley and R. K. Leach, “Development of a three-dimensional vibrating tactile probe for miniature CMMs,” Precis. Eng., Vol.37, pp. 491-499, 2013.
  7. [7] K. Hidaka, “Study of a small-sized ultrasonic probe,” CIRP Ann., Vol.55, pp. 567-570, 2006.
  8. [8] K. Hidaka, A. Saito, and S. Koga, “Study of a micro-roughness probe with ultrasonic sensor,” CIRP Ann. Manuf. Technol., Vol.57, pp. 489-492, 2008.
  9. [9] M. B. Bauza, R. J. Hocken, S. T. Smith, and S. C. Woody, “Development of a virtual probe tip with an application to high aspect ratio microscale features,” Rev. Sci. Instrum., Vol.76, 095112, 2005.
  10. [10] J. Claverley and R. Leach, “Three-dimensional characterisation of a novel vibrating tactile probe for miniature CMMs. Presented at the Laser Metrology and Machine Performance X (LAMBDAMAP 2013),” Chichley, UK, pp. 20-21, March 2013.
  11. [11] S. Ito, H. Kikuchi, Y. Chen, Y. Shimizu, W. Gao, K. Takahashi, T. Kanayama, K. Arakawa, and A. Hayashi, “A micro-coordinate measurement machine (CMM) for large-scale dimensional measurement of micro-slits,” Appl. Sci., Vol.6, doi:10.3390/app6050156, 2016.
  12. [12] T. Shiraishi and K. Mitsui, “Development of three dimensional profile measuring apparatus for microparts – Measuring principle and measuring results,” J. Jpn. Soc. Precis. Eng., Vol.64, pp. 1395-1399, 1998 (in Japanese).
  13. [13] T. Shiramatsu, K. Kitano, M. Kawata, and K. Mitsui, “Development of a measuring method for shape and dimension of micro-components – Modification to the original measuring system, calibration of the probes and the results of dimensional measurements,” J. Jpn. Soc. Precis. Eng. Ser. C, Vol.68, pp. 267-274, 2002 (in Japanese).
  14. [14] H. Schwenke, F. Wäldele, C. Weiskrich, and H. Kunzmann, “Opto-tactile sensor for 2D and 3D measurement of small structures on coordinate measuring machines,” CIRP Ann., Vol.50, pp. 361-364, 2001.
  15. [15] H. Shimizu, A. Ogawa, Y. Sasaki, and Y. Tamaru, “Property Evaluation of Eccentric Astigmatic Method to Apply Micro Tactile Probe” Int. J. of Automation Technology, Vol.9, No.5, pp. 551-557, 2015.
  16. [16] B. Muralikrishnan, J.A. Stone, and J.R. Stoup, “Fiber deflection probe for small hole metrology,” Precis. Eng., Vol.30, pp. 154-164, 2006.
  17. [17] H. Murakami, A. Katsuki, H. Onikura, T. Sajima, N. Kawagoishi, and E. Kondo, “Development of a System for Measuring Micro Hole Accuracy Using an Optical Fiber Probe,” J. of Advanced Mechanical Design, Systems, and Manufacturing, Vol.4, No.5, pp. 995-1004, 2010.
  18. [18] H. Murakami, A. Katsuki, T. Sajima, and T. Suematsu, “Study of a vibrating fiber probing system for 3-D micro-structures: Performance improvement,” Meas. Sci. Technol., Vol.25, doi:10.1088/0957-0233/25/9/094010, 2014.
  19. [19] H.Murakami, A. Katsuki, T. Sajima, and M. Fukuda, “Reduction of Liquid Bridge Force for 3D Microstructure Measurements,” Applied Sciences, Vol.6, No.153, doi:10.3390/app6050153, 2016.
  20. [20] H. Murakami, A. Katsuki, and T. Sajima, “Development of Touch Probing System Using a Fiber Stylus,” Fibers, Vol.4, No.24, doi:10.3390/fib4030024, 2016.
  21. [21] M. Michihata, Y. Takaya, and T. Hayashi, “Development of the nano-probe system based on the laser-trapping technique,” CIRP Ann., Vol.57, pp. 493-496, 2008.
  22. [22] Y.Takaya, M. Michihata, and T. Hayashi, “Scanning Type Microrobe for Displacement Measurement Based on Standing Wave Detection Using an Optically Trapped Particle,” Int. J. of Automation Technology, Vol.5, No.3, pp. 395-402, 2011.
  23. [23] R.-J. Li, K.-C. Fan, Q.-X. Huang, H. Zhou, E.-M. Gong, and M. Xiang, “A long-stroke 3D contact scanning probe for micro/nano coordinate measuring machine,” Precis. Eng., Vol.43, pp. 220-229, 2016.
  24. [24] G. Boris, D. Lothar, and H. Martin, “Design and characterization of a resonant triaxial microprobe,” J. Micromech. Microeng., Vol.25, 125011, 2015.
  25. [25] H. A. M. Spaan, R. L. Donker, and I. Widdershoven, “Isara 400: Development of an ultra-precision CMM for 3D measurement for large parts” In Procs. of the ASPE Spring Topical Meeting, Chicago, IL, USA, 6–7 April 2009.
  26. [26] F. Meli, M. Bieri, R. Thalmann, M. Fracheboud, J.-M. Breguet, R. Clavel, and S. Bottinelli, “Novel 3D analogue probe with a small sphere and low measurement force,” In Procs. of the ASPE Summer Topical Meeting, Charlotte, NC, USA, 25–26 June 2003.
  27. [27] W. O. Pril, “Development of High Precision Mechanical Probes for Coordinate Measuring Machines. Ph.D. Thesis,” Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2002.
  28. [28] T. Liebrich and W. Knapp, “New concept of a 3D-probing system for micro-components,” CIRP Ann., Vol.59, pp. 513-516, 2010.
  29. [29] I. Ogura and Y. Okazaki, “Development of Micro Contact Detection Probe for Microhole Quality Control,” Int. J. of Automation Technology, Vol.5, No.2, pp. 102-108, 2011.
  30. [30] S. Yang, S. Li, M. J. Kaiser, and F. H. K. Eric, “A probe for the measurement of diameters and form errors of small holes,” Meas. Sci. Technol., Vol.9, pp. 1365-1368, 1998.
  31. [31] S. Bütefisch, S. Büttgenbach, T. Kleine-Besten, and U. Brand, “Micromechanical three-axial tactile force sensor for micromaterial characterization,” Microsyst. Technol., Vol.7, pp. 171-174, 2001.
  32. [32] A. J. Lewis, “Fully traceable miniature CMM with submicrometer uncertainty,” Proc. SPIE 5190 Recent Dev. Traceable Dimens. Meas. II, Vol.265, doi:10.1117/12.503349, 2003.
  33. [33] E. J. C. Bos, “Aspects of tactile probing on the micro scale,” Precis. Eng., Vol.35, pp. 228-240, 2011.
  34. [34] M. Tachikura and N. Kashima, “Fusion splices for optical fiber using high-frequency discharge,” J. Lightwave Tech., LT-2, 1, 1984.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 23, 2024