Paper:
Decision Method of Target Shape Position and Orientation Corresponding to Actual Objects
Naoya Shimada†, Noboru Nagashima, and Keiichi Nakamoto
*Tokyo University of Agriculture and Technology
2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
†Corresponding author
- [1] T. Moriwaki, “Multi-functional machine tool,” CIRP Annals - Manufacturing Technology, Vol.57, pp. 736-749, 2008.
- [2] Y. Takeuchi, “Current State of the Art of Multi-Axis Control Machine Tools and CAM System,” Journal of Robotics and Mechatronics, Vol.26, No.5, pp. 529-539, 2014.
- [3] K. Nakanishi, M. Sawada, and J. Sakamoto, “A Newly Developed Multi-Axis Controlled Turning Machine Equipped with a Swing Type Turret Head,” Int. J. of Automation Technology, Vol.9, No.6, pp. 707-713, 2015.
- [4] T. Sakaguchi, T. Shimauchi, and K. Shirase, “Scheduling Based Collision Avoidance for Multitasking Machine,” Service Robotics and Mechatronics, pp. 313-316, 2007.
- [5] M. Schumann, M. Witt, and P. Klimant, “A Real-Time Collision Prevention System for Machine Tools,” Procedia CIRP, Vol.7, pp. 329-334, 2013.
- [6] E. Abele and D. Korff, “Avoidance of collision-caused spindle damages – challenges, methods and solutions for high dynamic machine tools,” CIRP Annals-Manufacturing Technology, Vol.60, pp. 425-428, 2011.
- [7] T. Kanda and K. Morishige, “Tool Path Generation for Five-Axis Controlled Machining with Consideration of Structural Interference,” Int. J. of Automation Technoligy, Vol.6, No.6, 2012.
- [8] J. Kaneko and K. Horio, “Tool Posture Planning Method for Continuous Multi Axis Control Machining with Consideration of Shortening Shank Length of End Mill,” Int. J. Automation Technology, Vol.6, No.5, 2012.
- [9] R. Ahmad and P. Plapper, “Generation of safe tool-path for 2.5 D milling/drilling machine-tool using 3D ToF sensor,” CIRP Journal of Manufacturing Science and Technology, Vol.10, pp. 84-91, 2015.
- [10] R. Ahmad, S. Tichadou, and J. Y. Hascoet, “New computer vision based Snakes and Ladders algorithm for the safe trajectory of two axis CNC machines,” Computer-Aided Design, Vol.44, No.5, pp. 355-366, 2012.
- [11] B. Lauwers, P. Dejonghe, and J. P. Kruth, “Optimal and collision free tool posture in five-axis machining through the tight integration of tool path generation and machine simulation,” Computer-Aided Design, Vol.35, No.5, pp. 421-432, 2003.
- [12] T. D. Tang, E. L. J. Bohez, and P. Koomsap, “The sweep plane algorithm for global collision detection with workpiece geometry update for five-axis NC machining,” Computer-Aided Design, Vol.39, No.11, pp. 1012-1024, 2007.
- [13] C. S. Jun, K. Cha, and Y. S. Lee, “Optimizing tool orientations for 5-axis machining by configuration-space search method,” Computer-Aided Design Vol.35, No.6, pp. 549-566, 2003.
- [14] T. Hida, T. Asano, K. Nishita, N. Sakai, A. Goto, and Y. Takeuchi, “Development of Online Real-Time Collision Free Machining Using Simulation with CNC Openness,” Int. J. of Automation Technology, Vol.9, No.4, pp. 403-410, 2015.
- [15] M. Kanamaru, N. Sakai, A. Goto, and T. Hida, “Development of Simulation Technology for 5-Axis Machines – Verification of Material Removal Model and Collision Avoidance,” Int. J. of Automation Technology, Vol.1, No.2, pp. 141-146, 2007.
- [16] X. Tian, H. Deng, M. Fujishima, and K. Yamazaki, “Quick 3D Modeling of Machining Environment by Means of On-machine Stereo Vision with Digital Decomposition,” CIRP Annals-Manufacturing Technology, Vol.56, No.1, pp. 411-414, 2007.
- [17] Y. Ihara and T. Nagasawa, “Fundamental Study of the On-Machine Measurement in the Machining Center with a Touch Trriger Probe,” Int. J. of Automation Technology, Vol.7, No.5, pp. 523-536, 2013.
- [18] S. Ibaraki and Y. Ota, “Error Calibration for Five-Axis Machine Tools byOn-the-Machine Measurement Using a Touch-Trigger Probe,” Int. J. of Automation Technology, Vol.8, No.1, pp. 20-27, 2014.
- [19] Renishaw, RMP600 high-accuracy touch probe (Data sheet: RMP600 ), http://www.renisaw.com [accessed Jul. 24, 2016]
- [20] H. Fukatsu, “Precision measurement for manufacturing,” Nikkan Kogyo Shimbun Ltd., pp. 85-97, 2007 (in Japanese).
- [21] K. Takamasu, R. Frutani, and S. Ozono, “Basic concept of feture-based metrology,” Measurement, Vol.26, pp. 151-156, 1999.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.