Technical Paper:
Whole Quenching of Small Thin Plate with Low-Power Semiconductor Laser Based on Feed-Speed Combination Problem
Yuki Manabe*,†, Ryosuke Oda*, Toshiki Hirogaki**, Eiichi Aoyama**, and Keiji Ogawa***
*Department of Science and Engineering, Doshisha University
1-3 Tataramiyakodani, Kyotanabe-shi, Kyoto 610-0394, Japan
†Corresponding author,
**Faculty of the Department of Science and Engineering, Doshisha University, Kyoto, Japan
***University of Shiga Prefecture, Shiga, Japan
- [1] S. Hideki, “Trans. of the Japan Society of Precision Engineers,” Autumn Symposium, pp. 10-13, 2006 (in Japanese).
- [2] J. H. Lee, S. R. Park, and S. H. Yang, “Development of a miniaturized machine tool for machining a micro/meso scale structure, Proc. of Int. Conf. on Leading Edge Manufacturing in 21st Century,” Nov.3-6, pp. 157-162, 2003.
- [3] T. Taira and I. Tanabe, “Study on coefficient of friction about sliding surface of a minute part (influence of shape and specification on the sliding surface),” Proc. of Int. Conf. on Leading Edge Manufacturing in 21st Century, Nov. 3-6, pp. 163-168, 2003.
- [4] J. Magee, K. G. Watkins, and W. M. Steen, “Advances in laser forming,” J. of Laser APPI. Vol.10, p. 235, 1998.
- [5] E. C. Santos, M. Shiomi, K. Osakada, and T. Laouib, “Rapid manufacturing of metal components by laser forming,” Int. J. of Machine Tools and Manufacturing, Vol.46, pp. 1459-1468, 2006.
- [6] K. Ogawa, T. Hirogaki, S. N. Melkote, and S. Ogawa, “A Process Decision Making Strategy Based on Sustainability Evaluation,” Int. J. of Automation Technol., Vol.9, No.1, pp. 51-58, 2015.
- [7] S. Ogawa, T. Hirogaki, and E. Aoyama, “Environmentally-friendly laser hardening method with low power laser, Doshisha University Academic Repository,” Vol.51, pp. 65-70, 2010 (in Japanese).
- [8] R. Ueda, K. Yamada, S. Oikawa, and N. Hosokawa, “Basic research about laser forming, precision engineering,” J. of JSPE, Vol.67, No.2, pp. 300-305, 2001 (in Japanese).
- [9] T. Nakamura, S. Ishihara, H. Aoyama, N. Matsushita, and A. Ushimaru, “Basic Study on Laser Forming CAM System for Sheet Material Forming Without Dies or Molds,” Int. J. Automation Technol., Vol.4, No.5, pp. 447-453, 2010.
- [10] M. Nunobiki, M. Misawa, H. Shizuka, and K. Okuda, “Effect of pre-deformation on workpiece for laser bending,” J. of JSPE, pp. 3-4, 2012 (in Japanese).
- [11] H. Kakiuchi, T. Sazawa, T. Akiyama, and T. Kitamura, “Laser Forming Based on Geodesic Line In-plane Strain Method Instead of Plate Development Method by using Curvature Line,” J. of JWS, Vol.93, pp. 294-295, (in Japanese).
- [12] M. Kido, K. Okusada, T. Akiyama, and T. Kitamura, “Effect of the initial curvature radius on the transverse shrinkage and angular distortion in forming curved surface,” J. of JWS, Vol.93, pp. 290-291, 2013 (in Japanese).
- [13] Z. Hu, R. Kovacevic, and M. Labudovic, “Experimental and numerical modeling of buckling instability of laser sheet forming,” Int. J. of Machine Tools and Manufacture, Vol.42, pp. 1427-1439, 2002.
- [14] K. Ogawa, T. Hirogaki, S. N. Melkote, and S. Ogawa, “A process decision making strategy based on sustainability evaluation,” Int. J. Automation Technol., Vol.9, No.1, pp. 51-58, 2015.
- [15] M. Geiger and F. Vollertsen, “The mechanisms of laser forming,” CIRP Annals: Manufacturing Technology, Vol.42, No.1, pp. 301-304, 1993.
- [16] Y. Terauchi, H. Nadano, and M. Kohno, “On the Temperature Rise Caused by Moving Heat Source : 1st Report, Calculation of the Temperature under Three-Dimensional Heat Flow,” J. of JSME, Vol.49, No.444, pp. 1434-1440, 1983 (in Japanese).
- [17] O. Manca, B. Morrone and V. Naso, “Quasi-steady-state three-dimensional temperature distribution induced by a moving circular Gaussian heat source in a finite depth solid,” Int. J. of Heat and Mass Transfer, Vol.38, pp. 1305-1315, 1995.
- [18] J. Mazumder and W. M. Steen,“ Heat transfer model for cw laser material processing,” J. of Applied Physics, Vol.51, p. 941, 1980.
- [19] T. Hirogaki, H. Nakagawa, M. Hayamizu, Y. Kita, Y. Kakino, and I. Yamaji, “Heat Treatment of on-the-Machine Tools using YAG Laser Source : Heat Treatment on the Edge of a Die,” J. of JAPE, Vol.67, No.5, pp. 808-813, 2001 (in Japanese).
- [20] T. Hirogaki, H. Nakagawa, Y. Kobori, Y. Kida, and Y. Kakino, “In-situ heat treatment system using YAG laser source: tempering process after laser quenching,” J. of JSPE, Vol.68, No.12, pp. 1595-1599, 2002 (in Japanese).
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.